| 研究生: |
洪榮燦 Hong, Rong-Can |
|---|---|
| 論文名稱: |
彈性結構破壞之有限元素分析與其應用實例探討 Finite Element Fracture Analyses in Elastic Structures and Its Applications with Case Studies |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 破壞力學 、有限元素分析 、擴展型有限元素法 、雷射劈裂 、奈米壓痕 、橡膠軸承 |
| 外文關鍵詞: | Fracture mechanics, extended finite element analysis, laser peeling, nano indentation, rubber bearing |
| 相關次數: | 點閱:239 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自近代的工程研究發展起,裂縫在結構中的成長與破壞機制一直是重要的問題。在有限元素分析中,裂縫模擬的數值方法如虛擬裂紋閉合法、擴展型有限元素法等在破壞模擬上的發展與應用至今仍方興未艾。然而,在破壞模擬的研究上,利用有關數值方法進行的應用研究,常未考慮該方法之基本假設和限制範圍,而有預測失準的疑慮。本文對當今較普及的破壞數值工具在套裝軟體上的適用空間做深入的探討,分析其適用前提與基本假設後,幫助相關的應用研究能有更堅實的使用基礎。建立基本應用前提後,本文以現今新興科技中之工程問題:雷射加工劈裂超薄玻璃、薄膜結構之破裂與脫層、橡膠軸承之破壞與脫層作為應用研究模型,探討不同數值方法之表現,透過系統化研究各種具代表性的實例,找出其優缺點和最佳應用場合。除了拓展相關工具之應用空間,本文也對當代工程之破壞研究問題提出裂縫成長預測、機制解釋和詳盡的參數分析。其相關產出成果可對微系統工程的元件可靠度、製造方法等提出參數調整與設計準則之參考。
Numerical simulations of fracture mechanics can provide wide parametric studies and detailed explanations of fracture mechanisms. However, there are some limitations on these numerical tools in packaged software to cause poor accuracy of prediction. In this thesis, the performance and applicability of XFEM and VCCT are compared in basic benchmark and different practical engineering issues. A methodology of application of XFEM is established to improve the accuracy and reliability of research with packaged tools for fracture simulations. The performance of XFEM and VCCT in different application area is discussed to provide practical suggestions for real engineering problems. For the case studies in this thesis, the simulations and parametric analyses are performed to explain the mechanisms and improve performance of systems. The contributions of this thesis are to provide a stronger basis for the use of numerical packages and to extend the application area of the XFEM tools.
[1] W. Merlijn van Spengen, “MEMS reliability from a failure mechanisms perspective,” Microelectronics Reliability, vol. 43, pp. 1049–1060, 2003.
[2] H. Y. Zheng and T. Lee, “Studies of CO2 Laser Peeling of Glass Substrates,” J. Micromech. Microeng., vol. 15, pp. 2093-2097, 2005.
[3] E.F. Rybicki and M.F. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral,” Eng. Fract. Mech., vol. 9, pp. 931–938, 1977.
[4] N. Moës, J. Dolbow and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, pp. 131–150, 1999.
[5] T. Belytschko et al., “A review of extended/generalized finite element methods for material modeling,” Modelling Simul. Mater. Sci. Eng., vol. 17, pp. 43001–43024, 2009.
[6] A. Corigliano, A. Ghisi, G. Langfelder, A. Longoni, F. Zaraga, A. Merassi, “A microsystem for the fracture characterization of polysilicon at the micro-scale,” European Journal of Mechanics A/Solids, vol.30, pp. 127-136, 2011.
[7] M. D. Thouless, E. Olsson and A. Gupta, “Cracking of brittle films on elastic substrates,” Acta etal. mater., Vol. 40, No. 6, pp. 1287-1292, 1992.T.-S. Yang et al., “Thermal analysis of a laser peeling technique for removing micro edge cracks of ultrathin glass substrates for web processing,” Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition, Houston, Texas, USA, 2015.
[8] T.-S. Yang, G.-D. Chen, K.-S. Chen, R.-C. Hong, T.-C. Chiu, C.-D. Wen, C.-H. Li, C.-J. H., K.-T. Chen, M.-C. Lin, “Thermal analysis of a laser peeling technique for removing micro edge cracks of ultrathin glass substrates for web processing,” Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition, Houston, Texas, USA, 2015.
[9] R. Krueger, “Virtual crack closure technique: History, approach, and applications,” Applied Mechanics Reviews, Vol. 57, pp. 109-143, 2004.
[10] Abaqus theory manual, Version 6.10, Stimula, 2009.
[11] A. T. Zehnder, Fracture Mechanics, Springer, 2012
[12] A. A. Griffith, "The phenomena of rupture and flow in solids," Philosophical Transactions of the Royal Society of London, Series A, vol. 221, pp. 163-198, 1921.
[13] G. R. Irwin, "Analysis of stress and strain near the end of crack traversing a plate," Journal of Applied Mechanics, vol. 24, pp. 361-364, 1957.
[14] G. R. Irwin, Fracture, encyclopaedic of physicics. Berlin: Springer-Verlag, 1958.
[15] J. R. Rice, "A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notched and Cracks," Journal of Applied Mechanics, vol. 35, pp. 379-386, 1968.
[16] Y. Yan and S.-H. Park, “An extended finite element method for modeling near-interfacial crack propagation in a layered structure,” International Journal of Solids and Structures, vol. 45, pp.4756-4765, 2008.
[17] A. Zamani and M. R. Eslami, “Implementation of the extended finite element method for dynamic thermoelastic fracture initiation,” International Journal of Solids and Structures, vol. 47, pp.1392-1404, 2010.
[18] G. L. Golewski, P. Golewski, T. Sadowski, “Numerical modeling crack propagation under Mode II fracture in plainconcretes containing siliceous fly-ash additive using XFEM method,” Computational Materials Science, vol. 62, pp.75-78, 2012.
[19] N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier, W. Bleck, “A micromechanical damage simulation of dual phase steels using XFEM,” Computational Materials Science, vol. 54, pp.271-279, 2012.
[20] M. F. Kanninen, “An augmented double cantilever beam model for studying crack propagation and arrest,” International Journal of Fracture, vol. 9, pp. 83–92, 1973.
[21] R. M. L. Foote and V. T. Buchwald, “An exact solution for the stress intensity factor for a double cantilever beam,” International Journal of Fracture, vol. 29, pp. 125–134, 1985.
[22] J. G. Williams, “End corrections for orthotropic DCB specimens,” Composites Science and Technology, Vol. 35, pp. 367-376, 1989.
[23] R. Olsson, “A simplified improved beam analysis of the DCB specimen,” Composites Science and Technology, Vol. 43, pp. 329-338, 1992.
[24] J. Chen and C.T. Liu, “Technology Advances in Flexible Displays and Substrates,” IEEE Access, vol. 1, pp. 150-158, 2013.
[25] S. Garner, S. Glaesemann, and X. Li, “Ultra-Slim Flexible Glass for Roll-to-Roll Electronic Device Fabrication,” Appl. Phys. A, vol. 116, no. 2, pp. 402-407, 2014.
[26] X. Li and S. Garner, S., 2014, “Laser Cutting of Flexible Glass,” Proc. CLEO Applications and Technology 2014, San Jose, CA, Paper Atu3L.1, 2014.
[27] C. H. Li, C. J. Huang, K. T. Chen, and M. C. Lin, “The enhanced thin glass with an ultra-high bending strength by a laser peeling technology,” Proc. The 21st International Display Workshops, Niigata, Japan, Paper FLXp1-12, 2014.
[28] C. Buerhop, R. Weissmann, “Temperature Development of Glass during CO2 Laser Irradiation. Part 1. Measurement and Calculation,” Glass Technology, vol. 37, no. 2, pp. 69–73, 1996.
[29] L. M. Yu, “Three-dimensional finite element modeling of laser cutting,” Journal of Materials Processing Technology, vol. 63, pp. 637–639, 1997.
[30] A. R. Shahani and M. Seyyedian, “Simulation of glass cutting with an impinging hot air jet,” International Journal of Solids and Structures, vol. 41, pp. 1313–1329, 2004
[31] 陳光迪, 透過暫態溫度場變化特性探討超薄玻璃雷射劈裂機制, 國立成功大學碩士論文, 2012.
[32] 黃策, 數值模擬雷射劈裂超薄玻璃之熱分析, 國立成功大學碩士論文, 2012.
[33] 黃毅文, 數值模擬雷射劈裂技術應用於不同玻璃之熱傳分析, 國立成功大學碩士論文, 2013.
[34] 郭沅益, 二氧化碳雷射切割超薄玻璃熱分析, 國立成功大學碩士論文, 2014.
[35] A. C. Fischer-Cripps, Nanoindentation, Springer, 2002
[36] M. Nastasi, D. M. Parkin, and H. Gleiter, “Mechanical properties and deformation behavior of materials having ultra-fine microstructures,” pp. 449-461, Kluwer Academic Publishers, 1993.
[37] D. S. Harding, W. C. Oliver, and G. M. Pharr, “Cracking during nanoindentation and its use in the measurement of fracture toughness,” Mat. Res. Soc. Symp. Proc., Vol.356, pp. 663-668, 1995.
[38] A. A. Volinsky, J. B. Vella, and W. W. Gerberich, “Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation,” Thin Solid Films, Vol.429, pp. 201-210, 2003.
[39] P. M. Sargent and M. F. Ashby, “Indentation creep,” Mat. Sci. and Tech., Vol.8, pp.594-601, 1992.
[40] J. L. Beuth and N. W. Klingbeil, “Cracking of thin films bonded to elastic-plastic substrates,” J. Much. Phys. Solids, Vol. 44, No. 9, pp. 1411-1428, 1996.
[41] R. M. Souza, G. G. W Mustoe, J. J. Moore, “Finite element modeling of the stresses, fracture and delamination during the indentation of hard elastic films on elasticplastic soft substrates,” Thin Solid Films, vol.392, pp. 65-74, 2001.
[42] M. R. Begley and J. M. Ambrico, “Channel cracking during thermal cycling of thin film multi-layers,” International Journal of Fracture, vol. 119/120, pp. 325–338, 2003.
[43] P. Liu, Y.-W. Zhang, K.-Y. Zeng, C. Lu, K.-Y. Lam, “Finite element analysis of interface delamination and buckling in thin film systems by wedge indentation,” Engineering Fracture Mechanics, vol. 74, pp. 1118–1125, 2007.
[44] C. She, Y.-W. Zhang, K.-Y. Zeng, “A three-dimensional finite element analysis of interface delamination in a ductile film/hard substrate system induced by wedge indentation,” Engineering Fracture Mechanics, vol. 76, pp. 2272–2280, 2009.
[45] J. M. Kelly, Mechanics of Rubber Bearings for Seismic and Vibration Isolation, 1sted. John Wiley & Sons Ltd, 2011.
[46] E. I. Rivin, “Properties and prospective applications of ultra thin layered rubber-metal laminates for limited travel bearings,” Tribology International, Vol. 16, pp. 17-25, 1983.
[47] E. I. Rivin, Stiffness and damping in mechanical design, Marcel Dekker, 1999.
[48] A. E. Barton and D. L. Trumper, “Study of rubber bearings and its applicability in precision machines,” Proc. 2005 ASPE Annual Meeting, Norfolk, VA, October 14, 2005
[49] A. E. Barton-Martinelli, Rubber Bearings for Precision Positioning Systems, Master Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2005.
[50] 鄧諺舉, 新型橡膠軸承一維定位平台之分析、設計、控制, 國立成功大學碩士論文, 2016.
[51] 林佩君, 雙軸式材料測試系統之設計與實現及其在橡膠軸承之應用, 國立成功大學碩士論文, 2013.
[52] 洪榮燦, 橡膠軸承之應力與失效分析, 科技部大專學生研究計畫報告, 2014
[53] R.-C. Hong and K.-S. Chen, "Improvement of Stiffness Models for Laminated Rubber Bearing using Hyperelastic Finite Element Analysis," The 4th IIAE International Conference on Industrial Application Engineering 2016, 2016.
[54] 陳拓丞, 應用因次分析法於奈米壓痕試驗之理論分析與數值模擬:殘留應力、基材效應與黏彈性質之研究, 國立成功大學碩士論文, 2004.
[55] 顏宏益, 應用奈米壓痕技術於塊狀與薄膜材料之機械性質檢測與分析, 國立成功大學碩士論文, 2006.
[56] 黃致凱, 壓痕技術於受快速熱退火與機械疲勞之電漿輔助化學氣相沉積氮化矽薄膜之破壞與界面特性檢測與分析, 國立成功大學碩士論文, 2010.
[57] 江智揚, 新型奈米壓痕基材效應模型建立與其在薄膜材料機械性質檢測之應用, 國立成功大學碩士論文, 2010.
[58] 雷射無痕玻璃削整設備 - 工研院, https://www.youtube.com/watch?v=QbX5_stCBTk, 2015
[59] D. Rosenthal and R. Schmember, “Thermal Study of Arc Welding,” Welding Journal, Supplement 208, 1938.
[60] D. K. Shetty, A. R. Rosenfield, and W. H. Duckworth, “Mixed-Mode Fracture in Biaxial Stress Stare: Application of the Diametral-Compression (Brazilian Disk) Test,” Eng. Fruct. Mech., vol. 26, no. 6, pp. 825-840, 1987
[61] A. N. Gent and P. B. Lindley, “The compression of bonded rubber blocks,” Proc. Instn. Mech. Engrs, Vol. 173, pp. 111-122, 1959.
[62] A. N. Gent and E. A. Meinecke, “Compression, Bending, and Shear of Bonded Rubber Blocks,” Polymer Engineering and Science, vol. 10, pp.48–53, 1970.
[63] P. B. Lindley, “Compression module for blocks of soft elastic material bonded to rigid end plates,” Journal of Strain Analysis, vol. 14, pp. 11–16, 1979.
[64] M. S. Chalhoub, and J. M. Kelly, “Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings,” International Journal of Solids and Structures, vol. 26, pp.734–760, 1990.
[65] H.-C. Tsai and C.-C. Lee, “Compressive stiffness of elastic layers bonded between rigid plates,” International Journal of Solids and Structures, vol. 35, pp. 3053–3069, 1998.
[66] H.-C. Tsai, “Compression analysis of rectangular elastic layers bonded between rigid plates,” International Journal of Solids and Structures, vol. 42, pp.3395–3410, 2005.
[67] http://www.matthewpais.com/
[68] A. Coppe, M. Pais, R.T. Haftka and N.H. Kim, "Using simple crack growth model in predictingremaining useful life," Journal of Aircraft, Vol. 49, No. 6, pp. 1965-1973, 2012.
[69] K.-S. Chen, T.-S. Yang, R.-C. Hong, C.-H. Li and M.-C. Lin, “Thermo-Mechanical Analysis of Laser Peeling of Ultrathin Glass for Removing Edge Flaws in Web Processing Applications”, 2016 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS, IEEE, Budapest, Hungary, 2016.