簡易檢索 / 詳目顯示

研究生: 陳儒瑾
Chen, Ju-chin
論文名稱: 利用光配向於高分子膜形成兩種液晶配向及其應用之研究
Studies of binary liquid crystal alignments using photo-alignment on polymer surface and their application
指導教授: 傅永貴
Fuh, Y.G. Andy
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 106
中文關鍵詞: 液晶光柵夫奈耳液晶透鏡不同視角顯示不同畫面的顯示器
外文關鍵詞: liquid crystal grating, view-angle dependent LCD, Fresnel lens
相關次數: 點閱:62下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主題是利用偶氮染料摻雜液晶之光配向機制研製具二元(binary)液晶排列結構之元件。首先在鍍有垂直或水平配向膜基板上旋鍍上一層單體膜,接著利用紫外光透過光罩照射基板,將光罩上之圖案印製在單體膜上,再利用適當之溶劑將未聚合之單體去除,最後形成高分子膜/垂直配向膜(或水平配向膜)兩區域,接著利用光配向將偶氮染料快速吸附在高分子膜上,而不吸附在原來之垂直或水平配向膜上,使原垂直或水平配向膜保持原配向力,如此可以藉由吸附偶氮染料造成一種液晶配向及另一垂直或水平配向膜液晶配向之二元排列結構。
      利用上述之二元液晶排列結構,本論文研製了三種液晶元件,分述如下:
    (a) 與偏振無關並可電控之高效率夫奈耳(Fresnel)液晶透鏡:這部分使用的光罩是夫奈耳區板(Fresnel zone plate),在偶數及奇數環區,分別產生兩個互相垂直的混成(hybrid)結構,其第一階聚焦效率可以外加電壓控制,實驗結果顯示,其最大效率約為34.14%,遠高於傳統夫奈耳透鏡之效率(約25.6%)。
    (b) 液晶光柵:這部分使用50 m的線條型光柵。在鄰近兩線條區域分別產生垂直及水平液晶配向成週期排列,其第一階繞射效率可以外加電壓控制,實驗結果顯示,當偏振方向平行於水平排列區域的液晶導軸時,最大繞射效率為26.98%。此外,第一階繞射效率在加電壓和不加電壓的情形下,皆可以入射光的線偏振方向做開關。並利用光轉換偶氮染料吸附方向將垂直及水平液晶配向轉成垂直及扭轉(twist)液晶配向之液晶光柵。
    (c) 不同視角顯示不同畫面的顯示器:這部分的應用是利用混成及垂直配向的二元液晶排列結構,並搭配互相垂直之偏振片製作一顯示器。該顯示器可在不同視角顯示兩種不同的畫面(dual-image),亦即藉由視角的變化切換顯示的畫面,利用DIMOS軟體工具分別模擬垂直和混成結構於垂直偏振片下不同視角的光穿透強度,比較實驗與模擬所得結果,相當吻合。

    This study demonstrates the feasibility of binary liquid crystal (LC) alignments based on azo dye-doped liquid crystals (ADDLCs). The fabrication process is described as follows. Firstly, a monomer film is spin-coated onto a glass substrate with a homeotropic or homogeneous alignment layer. Secondly, an unpolarized UV-light is irradiated onto the substrate through a photo-mask having a desired pattern, and then, the UV-cured polymer-pattern is retained after removing the un-polymerized monomers by a suitable solvent (Acetone 80% and alcohol 20%). Finally, binary regions having polymer film/ homeotropic (or homogeneous) alignment layer are generated. Three devices, developed using this approach, are summarized as follows.
    (a) Polarization-independent and electrically switchable Fresnel lens: In this part, we use a Fresnel zone plate mask to fabricate the binary regions. Orthogonally hybrid alignments between two adjacent zones are achieved. The focusing efficiency is electrically switchable. The maximum focusing efficiency of the fabricated ADDLC Fresnel lens is ~34.14%, which is much higher than that of the used Fresnel zone plate mask (~ 25.6%).
    (b) Liquid crystal grating: In this part, a binary LC structures are fabricated using 50 m grating mask. A LC grating with homeotropic and homogeneous alignments between two adjacent zones is achieved. The results show that the first order diffraction efficiency of this grating is electrically switchable, and the maximum diffraction efficiency of the first order is about 26.98%. Additionally, the binary structures can be optically switched to another binary LC structures - homeotropic and TN structures.
    (c) View-angle dependent LCD: Using binary LC structures, a LC cell having hybrid and homeotropic structures is fabricated. It is placed between two cross polarizers to form a LCD, which can display two different images by changing viewing angle. Additionally, the simulated transmittance contours of this LC display at different viewing angle obtained using the software of DIMOS consist with the experimental results.

    摘要.....................................................Ⅰ Abstract.................................................. Ⅲ 誌謝.................................................... .Ⅳ 目錄.....................................................Ⅴ 表目錄...................................................Ⅶ 圖目錄...................................................Ⅷ 第一章 緒論...............................................1 1.1 前言..................................................1 1.2 動機..................................................2 1.3 論文架構..............................................2 第二章 液晶簡介...........................................4 2.1 何謂液晶.............................................. 4 2.2 液晶分類..............................................5 2.3 液晶物理特性..........................................9 第三章 基礎理論..........................................19 3.1 聚合物反應的過程(polymerization)........................19 3.2光激發引致染料分子旋轉效應............................20 3.3 吸附效應(Adsorption Effect) .............................25 3.4 夫瑞耳區板(Fresnel zone plate)理論.......................28 3.5 光柵分類(Category of Gratings) ...........................33 第四章 樣品製作與實驗架設................................39 4.1 樣品材料.............................................39 4.2 樣品製作流程.........................................44 4.3 樣品觀察細微結構之分析儀器...........................51 4.4 實驗架設.............................................53 4.5 實驗參數.............................................54 第五章 結果與分析........................................57 5.1與偏振無關並可電控之高效率夫奈耳(Fresnel)液晶透鏡.......57 5.2 液晶光柵.............................................75 5.3 不同視角顯示不同畫面的顯示器.........................91 第六章 結論與未來展望...................................100 6.1 結論................................................100 6.2 未來展望............................................102 參考文獻................................................105

    [1] E. Ouskova, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J.L. West, O.V. Kuksenok, O. Francescangeli and F. Simoni, Phys. Rev. E 64, 051709 (2001).
    [2] C. Sanchez, R. Cases, R. Alcala, A. Lopez, M. Quintanilla, L. Oriol and M. Millaruelo, J. App. Phys. 89, 10, 5299 (2001).
    [3] M. HARA, S. ICHIKAWA, H. TAKEZOE and A. FUKUDA, Jpn. J. Appl. Phys. 23, 1420 (1984).
    [4] M. HARA, H. TAKEZOE and A. FUKUDA, Jpn. J. Appl. Phys. 25, 1756 (1986).
    [5] I. Jánossy, A.D. Lloyd and B. S. Wherrett, Mol. Crys. & Liq. Cryst. 179, 1 (1990).
    [6] I. Jánossy, L. Csillag and A.D. Lloyd, Phys. Rev. A 44, 8410 (1991).
    [7] W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, Nature 351, 49 (1991).
    [8] I. Jánossy and T. Kosa, Opt. Lett. 17, 1183 (1992).
    [9] Alan G. -S. Chen and David J. Brady, Opt. Lett. 17, 1231 (1992).
    [10] A. G. Chen and D. J. Brady, Opt. Lett. 17, 441 (1992).
    [11] I. C. Khoo, Hong Li and Yu Liang, Opt. Lett. 19, 1723 (1994).
    [12] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals”, 2nd ed., Clarendon Press, Oxford (1993).
    [13] Heuberger G. and Sillescu H. J., J. Phys. Chem. 100, 15255 (1996).
    [14] T. V. Gastyan, V. Drnoyan and S.M. Arakelian, Phys. Lett. A 217, 52 (1996).
    [15] T. V. Galstyan, B. Saad and M. M. Denariez-Roberge, J. Chem. Phys 107, 9319 (1997).
    [16] D. J. Broer, SID Tech. Digest 26, 165 (1995).
    [17] 朱自強, 王仕璠, 蘇顯渝, 現代光學教程, 四川大學出版社, 成都(1990).
    [18] I. Jánossy, A.D. Lloyd and B. S. Wherrett, Mol. Crys. & Liq. Cryst. 179, 1 (1990).
    [19] I. Jánossy, L. Csillag and A.D. Lloyd, Phys. Rev. A 44, 8410 (1991).
    [20] I. Jánossy and T. Kosa, Opt. Lett. 17, 1183 (1992).
    [21] I. Jánossy and A.D. Lloyd, Mol. Cryst. Liq. Cryst. 203, 74 (1991).
    [22] I. Jánossy, Phys. Rev. E 49, 2957 (1994).
    [23] Dennis Gabor, Nature 161, 777 (1948).
    [24] W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, Nature 351, 49 (1991).
    [25] W. Y. Y. Wong, T. M. Wong and H. Hiraoka, Appl. Phys. A 65, 519 (1997).
    [26] E. Ouskova, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J.L. West, O.V. Kuksenok, O. Francescangeli and F. Simoni, Phys. Rev. E 64, 051709 (2001)
    [27] S. Slussarenko, O. Francescangeli and F. Simoni, Appl. Phys. Lett. 71, 3613 (1997).
    [28] D. Voloschenko, A. Khizhnyak, Y. Reznikov and V. Reshetnyak, Jpn. J. Appl. Phys. 34, 566 (1995).
    [29] F. Simoni, O. Francescangeli, Y. Reznikov and S. Slussarenko, Opt. Lett. 22, 549 (1997).
    [30] F. Simoni and O. Francescangeli, J. Phys. Condens. Matter 11, R439 (1999).
    [31] D. Fedorenko, E. Ouskova, V. Reshetnyak and Y. Reznikov, Phys. Rev. E 73, 031701 (2006).
    [32] C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo and Andy Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
    [33] S. Y. Huang, S. T. Wu and A. Y.-G. Fuh, Appl. Phys. Lett. 88, 041104 (2006).
    [34] Ajoy Ghatak, “Optics,” Mc Graw Hill (2004)
    [35] Kasra Rastani, Abdellatif Marrakchi, Sarry F. Habiby, William M. Hubbard, Harold Gilchrist, and Robert E. Nahory, Appl. Opt. 30, 1347 (1991)
    [36] P. C. Mehta and V. V. Rampal, “Lasers and Holography”, World Scientific, Singapore, 1993.
    [37] H. J. Eichler, P. Gűnter and D. W. Pohl, “Laser-Induced Dynamic Gratings”, Pringer-Verlag, Berlin, 1985.
    [38] P. Yeh, “Introduction of Photorefractive Nonlinear Optics”, John Wiley & Sons, New York, 1993.

    下載圖示 校內:2010-07-23公開
    校外:2011-07-23公開
    QR CODE