| 研究生: |
黃孟桉 Huang, Meng-An |
|---|---|
| 論文名稱: |
探討有機碳含量對壬基酚之平衡Koc與現地Koc的影響 Assessing the influence of organic carbon content on Koc and in-situ Koc of 4-nonylphenol |
| 指導教授: |
陳?如
Chen, Wan-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 壬基酚 、機械混合 、吸附平衡實驗 、管柱試驗 、有機碳水分配係數 |
| 外文關鍵詞: | Nonylphenol, mechanical mixing, sorption equilibrium experiment, column test, organic carbon-water partition coefficient |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
污染物在固相和液相之間的濃度分佈對於了解污染物在環境中的遷移和吸附狀態很重要,因此,從平衡吸附實驗獲得的土壤水分配係數(Kd)經常被用來預測污染物的遷移。由於壬基酚等有機污染物主要累積在土壤有機質中,所以有機碳-水分配係數(Koc)更適合用來描述有機污染物的吸附情況。但是來自不同文獻壬基酚的Koc值變動很大,因此本研究先求得本實驗使用之土壤之Koc,以探討有機碳含量(OC%)是否會影響壬基酚之平衡Koc,並透過管柱實驗了解有機碳含量對現地Koc (in-situ Koc)的影響,最後採取鹽水溪樣品進行機械混合實驗,求得現地Koc以確認環境中的壬基酚是否達到平衡。
由平衡吸附實驗的結果顯示出在高有機碳含量下(OC>1%),壬基酚的log Koc值不受有機質含量影響,為4.65,但在有機碳含量低於1%以下,Koc值會被高估,這是因為礦物質對壬基酚的吸附量也被計算成有機碳的吸附所導致。在管柱實驗中,有機碳含量越高,觀察到的遲滯現象越明顯,壬基酚在管柱中的平均停留時間愈長,顯示出有機碳的含量確實影響壬基酚的傳輸,但對於模擬出的現地Koc則無顯著影響。此外,現地Koc會隨著流速降低以及背景離子濃度上升而增加,然而由管柱實驗所獲得之現地Koc皆遠小於平衡之Koc。最後,由環境樣品之機械混合實驗發現,混合後壬基酚之土水分佈顯示出更佳的線性與正相關性,然而不管是機械混合前或混合後,其土水分佈都遠遠低於壬基酚之平衡Koc,與管柱實驗所獲得之現地Koc相符,顯示在現地壬基酚是屬於吸附狀態,尚未達到平衡。
The distribution of pollutants between solid and liquid phase is important to understand the transport and adsorption state of pollutants in the environment. Therefore, the soil-water distribution coefficient (Kd) obtained from the batch experiments is often used to predict the transport of pollutants. Since organic pollutants such as nonylphenol mainly accumulate in soil organic matter, the organic carbon-water partition coefficient (Koc) is more suitable to describe its sorption behavior. However, the Koc values in different literatures vary significantly. This study tested whether organic carbon content (OC%) affects the equilibrium Koc. In addition, the column experiments were applied to investigate the influence of organic carbon content on the in-situ Koc. Then, a mechanical mixing experiment was used to check whether the 4-nonylphenol (4-NP) samples in YS river reached equilibrium or not.
The results show that the Koc value of the tested soil is a fixed number when OC% is higher than 1%. However, the Koc values would be overestimated at low OC% because the adsorption on minerals is mistakenly considered as the adsorption of organic carbon. In column experiment, the higher the organic carbon content, the more obvious the retardation observed, and the longer the residence time of 4-NP. This indicated that the organic carbon content did affect the transport of 4-NP, but didn’t affect in-situ Koc. In addition, in-situ Koc decreases with increasing water flow velocity and increases with the increase of ionic strength. All the in-situ Koc were unexpectedly much lower than equilibrium Koc. For the environmental samples, mechanical mixing helps the samples to be more evenly distributed, and the positive correlation between 4-NP in the soil and that in the water becomes more linear. The in-situ Koc of environmental samples is much lower than the equilibrium Koc of 4-NP, which is consistent with the column experiment results, indicating that the adsorption amount of 4-NP does not exceed the capacity of soil/sediment, and 4-NP is in an adsorbed state and has not yet reached equilibrium in the environment.
Ahel, M., & Giger, W. (1993). Aqueous solubility of alkylphenols and alkylphenol polyethoxylates. Chemosphere, 26(8), 1461-1470.
Ahel, M., Scully Jr, F. E., Hoigné, J., & Giger, W. (1994). Photochemical degradation of nonylphenol and nonylphenol polyethoxylates in natural waters. Chemosphere, 28(7), 1361-1368.
Banzhaf, S., & Hebig, K. H. (2016). Use of column experiments to investigate the fate of organic micropollutants–a review. Hydrology and Earth System Sciences, 20(9), 3719-3737.
Bester, K., Theobald, N., & Schröder, H. F. (2001). Nonylphenols, nonylphenol-ethoxylates, linear alkylbenzenesulfonates (LAS) and bis (4-chlorophenyl)-sulfone in the German Bight of the North Sea. Chemosphere, 45(6-7), 817-826.
Chiou, C. T. (1989). Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. Reactions and movement of organic chemicals in soils, 22, 1-29.
Chiou, C. T., Peters, L. J., & Freed, V. H. (1979). A physical concept of soil-water equilibria for nonionic organic compounds. Science, 206(4420), 831-832.
Düring, R.-A., Krahe, S., & Gäth, S. (2002). Sorption behavior of nonylphenol in terrestrial soils. Environmental science & technology, 36(19), 4052-4057.
Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (Vol. 506): Wiley New York.
ECHA. (2002). 4-NONYLPHENOL (BRANCHED) AND NONYLPHENOL. European Union Risk Assessment Report.
ECHA. (2012). Substance name: 4-nonylphenol, branched and linear. Retrieved from https://echa.europa.eu/documents/10162/3024c102-20c9-4973-8f4e-7fcldd361e7d.
EPA, U. (2010). Nonylphenol (NP) and nonylphenol ethoxylates (NPEs) action plan. RIN.
Gilbert, O., Hernández, M., Vilanova, E., & Cornellà, O. (2014). Guidelining protocol for soil-column experiments assessing fate and transport of trace organics. Demeau, European Union: Brussels, Belgium.
Hou, S. G., Sun, H. W., & Gao, Y. (2006). Sorption of small metabolites of nonylphenol polyethoxylates in single and complex systems on aquatic suspended particulate matter. Chemosphere, 63(1), 31-38. doi:10.1016/j.chemosphere.2005.07.069
Isobe, T., Nishiyama, H., Nakashima, A., & Takada, H. (2001). Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environmental science & technology, 35(6), 1041-1049.
Jobling, S., Nolan, M., Tyler, C. R., Brighty, G., & Sumpter, J. P. (1998). Widespread sexual disruption in wild fish. Environmental science & technology, 32(17), 2498-2506.
Jonkers, N., Laane, R. W., & de Voogt, P. (2003). Fate of nonylphenol ethoxylates and their metabolites in two Dutch estuaries: evidence of biodegradation in the field. Environmental science & technology, 37(2), 321-327.
Karickhoff, S. W. (1981). Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere, 10(8), 833-846.
Kenaga, E. E., & Goring, C. A. (1980). Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota Aquatic toxicology: ASTM International.
Lee, P. C. (1998). Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats. Endocrine, 9(1), 105-111.
Li, D., Kim, M., Shim, W. J., Yim, U. H., Oh, J.-R., & Kwon, Y.-J. (2004). Seasonal flux of nonylphenol in Han River, Korea. Chemosphere, 56(1), 1-6.
Li, J., Zhou, B., Liu, Y., Yang, Q., & Cai, W. (2008). Influence of the coexisting contaminants on bisphenol A sorption and desorption in soil. Journal of Hazardous Materials, 151(2-3), 389-393.
Liao, X., Zhang, C., Yao, L., Li, J., Liu, M., Xu, L., & Evalde, M. (2014). Sorption behavior of nonylphenol (NP) on sewage-irrigated soil: kinetic and thermodynamic studies. Science of the Total Environment, 473, 530-536.
Lu, Z., & Gan, J. (2014). Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship. Environmental science & technology, 48(2), 1008-1014.
Manes, M. (1980). The Polanyi adsorption potential theory and its applications to adsorption from water solution onto activated carbon. Activated carbon adsorption of organics from the aqueous phase, 1, 43-64.
Milinovic, J., Lacorte, S., Rigol, A., & Vidal, M. (2015). Sorption behaviour of nonylphenol and nonylphenol monoethoxylate in soils. Chemosphere, 138, 952-959.
Navarro, A., Endo, S., Gocht, T., Barth, J. A., Lacorte, S., Barceló, D., & Grathwohl, P. (2009). Sorption of alkylphenols on Ebro River sediments: comparing isotherms with field observations in river water and sediments. Environmental Pollution, 157(2), 698-703.
Omeroglu, S., Murdoch, F. K., & Sanin, F. D. (2015). Investigation of nonylphenol and nonylphenol ethoxylates in sewage sludge samples from a metropolitan wastewater treatment plant in Turkey. Talanta, 131, 650-655. doi:10.1016/j.talanta.2014.08.014
Perret, J., Prasher, S., Kantzas, A., Hamilton, K., & Langford, C. (2000). Preferential solute flow in intact soil columns measured by SPECT scanning. Soil Science Society of America Journal, 64(2), 469-477.
Petrovic, M., Fernández‐Alba, A. R., Borrull, F., Marce, R. M., Mazo, E. G., & Barceló, D. (2002). Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environmental Toxicology and Chemistry: An International Journal, 21(1), 37-46.
Relyea, J. F. (1982). Theoretical and experimental considerations for the use of the column method for determining retardation factors. Radioact. Waste Manage. Nucl. Fuel Cycle, 3(2), 151-166.
Renner, R. (1997). European bans on surfactant trigger transatlantic debate. Environmental science & technology, 31(7), 316A-320A.
Rice, C. P., Schmitz-Afonso, I., Loyo-Rosales, J. E., Link, E., Thoma, R., Fay, L., . . . Camp, M. J. (2003). Alkylphenol and alkylphenol-ethoxylates in carp, water, and sediment from the Cuyahoga River, Ohio. Environmental science & technology, 37(17), 3747-3754.
Sabik, H., Gagné, F., Blaise, C., Marcogliese, D., & Jeannot, R. (2003). Occurrence of alkylphenol polyethoxylates in the St. Lawrence River and their bioconcentration by mussels (Elliptio complanata). Chemosphere, 51(5), 349-356.
Shan, J., Jiang, B., Yu, B., Li, C., Sun, Y., Guo, H., . . . Ji, R. (2011). Isomer-specific degradation of branched and linear 4-nonylphenol isomers in an oxic soil. Environmental science & technology, 45(19), 8283-8289.
Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033-1049. doi:10.1016/j.envint.2008.01.004
Soto, A. M., Justicia, H., Wray, J. W., & Sonnenschein, C. (1991). p-Nonyl-phenol: an estrogenic xenobiotic released from" modified" polystyrene. Environmental health perspectives, 92, 167-173.
Wang, S., Li, X., Wu, W., & Liu, F. (2019). Sorption and Desorption Behavior of 4-Nonylphenol and a Branched Isomer on Soils with Long-Term Reclaimed Water Irrigation. Environmental Engineering Science, 36(9), 1100-1111.
Weber Jr, W. J., McGinley, P. M., & Katz, L. E. (1991). Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Research, 25(5), 499-528.
Wu, Z., Zhang, Z., Chen, S., He, F., Fu, G., Liang, W., & Wu, Z. (2007). Nonylphenol and octylphenol in urban eutrophic lakes of the subtropical China.
Ying, G.-G., Williams, B., & Kookana, R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environment International, 28(3), 215-226.
Zhang, D., Duan, D., Huang, Y., Xiong, Y., Yang, Y., & Ran, Y. (2016). Role of structure, accessibility and microporosity on sorption of phenanthrene and nonylphenol by sediments and their fractions. Environmental Pollution, 219, 456-465.
行政院環境保護署. (2019). 108年化學物質環境流布調查成果手冊
呂小玉. (2020). 以吸/脫附管柱試驗探討流速對雙酚A現地Koc的影響. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/3gd3mu
周晏如. (2016). 環境中有機質對於雙酚A於土水介面分配之影響. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/4serhx
林居慶 , 邱. 秦., 洪瑋濃. (2014). 土壤中有機污染物濃度與實際強關聯性研究計畫,行政院環境保護署檢驗所 103 年委託專案研究計畫 .
林琪媛. (2017). 機械混合對雙酚 A 和壬基酚在底泥有機質/水介面之非平衡現象之影響.
校內:2026-08-01公開