| 研究生: |
龐凱齡 Pang, Kai-Lin |
|---|---|
| 論文名稱: |
從體感資料中發掘異常行為模式 Discovering Unusual Behavior Patterns from Motion Data |
| 指導教授: |
鄧維光
Teng, Wei-Guang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 以密度為基礎的資料分群 、體感資料 、異常行為 、視覺監控 |
| 外文關鍵詞: | density-based clustering, motion data, unusual behavior, visual surveillance |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今公共場所中已可隨處見到監控攝影機了,而如何從大量視訊資料中發掘出不尋常的行為模式是一個極具挑戰性的問題;然而,由於以電腦視覺演算法來進行物件辨識與意圖偵測仍十分困難,因此發掘異常行為此一任務往往只能藉由人力來完成。近年來,隨著低成本深度攝影機的問世,人體動作擷取的效益與準確度已大為提昇,藉此便可直接提供包含人體關節座標的體感資料。在本研究中,我們規劃了座標轉換、正規化、切割、特徵擷取和降維等完整的系統處理流程,以利後續之異常行為探勘工作;此外,有別於前人研究中大多採用須事先定義 (正常或異常) 行為模式之資料分類技術,本研究規劃將主要以資料分群技術來實現異常行為偵測此一目的,便可不必受限於場景特性而有不同行為模式定義之不一致問題,更明確地而言,我們採用了基於密度的資料分群技術,可透過調整半徑與群內最少點數這兩個參數以妥適地產出異常行為模式。最後,我們採用了兩個資料集來進行實驗評估,結果顯示我們所提出之方法對於異常行為偵測可有顯著的效果。
As there are more and more surveillance cameras installed in public places, a challenging problem is to discover unusual behavior patterns from a huge amount of video data. However, this task is currently only feasible for human beings because both object recognition and intention detection are still difficult for computer vision algorithms. Recently, with the release of low-cost depth cameras, motion data containing 3D coordinates of skeleton joints can be directly captured, thus facilitating following analysis tasks. In this work, we devise a complete system flow which includes steps of coordinate transformation, normalization, segmentation, feature extraction and dimensionality reduction so as to achieve the purpose of discovering unusual behavior patterns. Note that prior works generally require to predefine (either normal or abnormal) behavior patterns and then utilize data classification techniques for further analysis. Instead, we propose in this work to utilize data clustering techniques to discover unusual behavior patterns so that the inconsistencies of defining behavior patterns in various scenarios can be eased. Specifically, we adopt a density-based clustering technique and adjust the values of two parameters (i.e., radius and minimum points) to appropriately generate unusual behavior patterns. Finally, two datasets including MSR action recognition and AffectME (affective multimodal engagement) are used in our experiments for evaluation purposes. Empirical studies show that our approach is effective for discovering unusual behavior patterns.
[1] K. Adistambha, S. Davis, C. Ritz, I. S. Burnett and D. Stirling, “Enhancing Multimedia Search Using Human Motion,” Multimedia - A Multidisciplinary Approach to Complex Issues, pages 161-174, 2012.
[2] AffectME: Affective Multimodal Engagement, http://web4.cs.ucl.ac.uk/uclic/people/ n.berthouze/AffectME.html, Accessed 1 December, 2013.
[3] M. D. Breitenstein, H. Grabner and L. V. Gool, “Hunting Nessie – Real Time Abnormality Detection from Webcams,” Proceedings of the 12th IEEE International Conference on Computer Vision Workshops, pages 1243-1250, September 2009.
[4] M. A. Dagli and C. E. Erdem, “Auto-Detection of Unusual Events in Metro Stations via Security Cameras,” Proceedings of the 21st Signal Processing and Communications Applications Conference, pages 1-4, April 2013.
[5] S. Denman, A. Bialkowski, C. Fookes and S. Sridharan, “Determining Operational Measures from Multi-Camera Surveillance Systems using Soft Biometrics,” Proceedings of the 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance, pages 462-467, August 2011.
[6] P. Dickinson and A. Hunter, “Using Inactivity to Detect Unusual behavior,” IEEE Workshop on Motion and video Computing, pp. 1 – 6, 2008
[7] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press. pages 226-231. ISBN 1-57735-004-9.
[8] J. Han, M. Kamber and J. Pei, “Data Mining: Concepts and Techniques,” Morgan Kaufmann Publishers, ISBN: 0123814790, 2011.
[9] C. Held, J. Krumm, P. Markel, and R. P. Schenke, “Intelligent Video Surveillance,” Computer, 45(3): 83-84, 2012.
[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments,” Proceedings of the 12th International Symposium on Experimental Robotics, December 2010.
[11] V. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artificial Intelligence Review, 22(2): 85-126, October 2004.
[12] S. Hommes, R. State, A. Zinnen and T. Engel, “Detection of Abnormal Behaviour in a Surveillance Environment Using Control Charts,” Proceedings of the 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance, pages 113-118, August 2011.
[13] B. Hong, S. Yufang and X. Bo, “Video Based Abnormal Behavior Detection,” Proceedings of the 2011 International Conference on Innovative Computing and Cloud Computing, pages 32-35, August 2011.
[14] Y. Hu, S. Wu, S. Xia, J. Fu and W. Chen, “Motion Track: Visualizing Variations of Human Motion Data,” Proceedings of IEEE Pacific Visualization Symposium, pages 153-160, March 2010.
[15] S. Hussmann, T. Ringbeck and B. Hagebeuker. A Performance Review of 3D TOF Vision Systems in Comparison to Stereo Vision Systems, Stereo Vision, Asim Bhatti (Ed.), ISBN: 978-953-7619-22-0, InTech, DOI: 10.5772/5898, 2008.
[16] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,” ACM Computing Surveys, 31(3): 264-323, September 1999.
[17] A. K. Jain, A. Ross, and S. Prabhakar, “An Introduction to Biometric Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, 14(1): 4-20, January 2004.
[18] K. Khoshelham, “Accuracy Analysis of Kinect Depth Data,” Proceedings of International Society of Photogrammetry and Remote Sensing Workshop Laser Scanning, 38(5): 1-6, 2011.
[19] J. Kim, D. Yeom and Y. Joo, “Fast and Robust Algorithm for Tracking Multiple Moving Objects for Intelligent Video Surveillance Systems,” IEEE Transactions on Consumer Electronics, 57(3): 1165-1170, 2011.
[20] H.-P. Kriegel, P. Kroger, J. Sander and A. Zimek, “Density-Based Clustering,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3): 231-240, 2011.
[21] J.-G. Lee, J. Han and X. Li, “Trajectory Outlier Detection: A Partition-and-Detect Framework,” Proceedings of the 24th IEEE International Conference on Data Engineering, Cancun, pages 140-149, April 2008.
[22] X. Mo, V. Monga, R. Bala and Z. Fan, “Adaptive Sparse Representations for Video Anomaly Detection,” IEEE Transactions on Circuits and Systems for Video Technology, 99: 1-14, August 2013.
[23] B. Moore, “Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction,” IEEE Transactions on Automatic Control, 26(1): 17-32, February 1981.
[24] MSR Action Recognition Datasets and Codes, http://research.microsoft.com/en-us/ um/people/zliu/actionrecorsrc/, Accessed 1 December, 2013.
[25] M. Müller, T. Röder and M. Clausen, “Efficient Content-Based Retrieval of Motion Capture Data,” Proceedings of ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, 24(3): 677-685, July 2005.
[26] J. F. Nieves, “Data Clustering for Anomaly Detection in Network Intrusion Detection,” Research Alliance in Math and Science, pages 1-12, August 2009.
[27] O. P. Popoola and K. Wang, “Video-Based Abnormal Human Behavior Recognition—A Review,” IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(6): 865-878, 2012.
[28] R. Poppe, “Vision-Based Human Motion Analysis: An Overview,” Computer Vision and Image Understanding, 108(1):4-18, October 2007.
[29] Psychology: An Introduction, http://www.intropsych.com/index.html, Accessed 1 December, 2013.
[30] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake, “Real-time Human Pose Recognition in Parts from Single Depth Images,” Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pages 1297-1304, June 2011.
[31] J. Wang, Z. Liu, Y. Wu and J Yuan, “Mining Actionlet Ensemble for Action Recognition with Depth Cameras,” IEEE Conference on Computer Vision and Pattern Recognition, pages 1290-1297, June 2012.
[32] A. Yao, J. Gall, G. Fanelli and L. V. Gool, “Does Human Action Recognition Benefit from Pose Estimation?” Proceedings of the British Machine Vision Conference, pages 67.1-67.11, September 2011.
[33] T.-H. Yu and Y.-S. Moon, “Unsupervised Real-Time Unusual Behavior Detection for Biometric-Assisted Visual Surveillance,” Proceedings of the Third International Conference on Advances in Biometrics, pages 1019-1029, June 2009.
[34] K. Yun, J. Honorio, D. Chattopadhyay, T. L. Berg and D. Samaras, “Two-person Interaction Detection Using Body-Pose Features and Multiple Instance Learning,” Proceeding of 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pages 28-35, June 2012.
[35] X. Zhang, D. S. Biswas and G. Fan, “A Software Pipeline for 3D Animation Generation Using MoCap Data and Commercial Shape Models,” Proceedings of the ACM International Conference on Image and Video Retrieval, pages 350-357, July 2010.