簡易檢索 / 詳目顯示

研究生: 邱映軒
Ciou, Ying-Syuan
論文名稱: 魚類群聚與環境關聯性及伏流水與地表逕流交換分析
The Relationships between Fish Assemblages and Environmental Factors and the Analysis of Hyporheic-Surface Hydrological Exchanges.
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 109
中文關鍵詞: 土地利用伏流水魚類群聚與環境因子棲地適合度指數
外文關鍵詞: Hyporheic Zone, Fish Assemblages and Environmental Factors, Habitat Suitability Index, Land Use
相關次數: 點閱:42下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究區域位於屏東縣萬巒鄉五溝水,根據內政部國土測繪中心提供的2018年土地利用分區圖層和歷年採樣資料綜合評估下選擇一號水門、屋背溝和下游區三個區域,探討三區域之間地表逕流水質差異,並且比較不同年份下屋背溝區(2014年和2021年)和下游區(2013年、2019年和2021年)地表逕流水質差異。
    伏流水介於地表逕流和地下水之間,其水質特性受到上湧和下滲交換機制影響,且與地表逕流水質也會有很大差別。伏流水和地表逕流水質分析中發現,水溫、導電度、鹽度、pH和溶氧皆有顯著差異。在伏流水上湧和下滲水質差異比較中,只有溫度有顯著差異。
    棲地或水質等環境因子的變化會影響魚類群聚和族群量。本研究利用排序分析,探討樣點、物種與環境因子間的相關性。選擇11種物種:銀高體鲃、橘尾窄口鲃、中華鰍、短吻紅斑吻鰕虎、極樂吻鰕虎、台灣鬚鱲、台灣石賓、線鱧、粗首馬口鱲、半紋小鲃和絲鰭毛足鬥魚,利用複迴歸分析的逐步迴歸法,探討單一物種的豐富度與環境因子相關性。大部分的魚類都有其偏好的物理棲地環境,在半紋小鲃水深、流速及底質棲地適合度指數分析中,得知此物種偏好流速為0 ~ 0.1(m/s)、水深為45 ~ 60(cm)且底質為鵝卵石(粒徑64 ~ 256mm)的棲息地。利用排序分析、複迴歸分析和棲地適合度指數的分析結果,發現半紋小鲃喜歡水深深的緩流地區,短吻紅斑吻鰕虎喜歡水深淺的急流地區,兩物種的棲地選擇不同。了解物種的棲地偏好有助於未來保育人員制定更完善的保育政策。

    In this study, we selected three zones with different land use and tried to find out the difference in water quality of surface runoff between the three zones. We used the data collected by our laboratory in Wu-Gon-Shui to compare the differences in water quality of surface runoff in First Water Gate zone, Wubeigou zone and Downstream zone. Hyporheic zone is defined as the region where mixes with surface runoff and groundwater, and its water quality is affected by the upwelling and downwelling exchange mechanism. The water quality between surface runoff and hyporheic zone is also very different. Our results showed that there were significant differences in water temperature, conductivity, salinity, pH and dissolved oxygen between hyporheic zone and surface runoff. Comparing of the water quality between the upwelling and downwelling, the results showed that only the temperature was significantly different. Changes such as physical habitat or water quality affected fish assemblages and abundance. The ordination methods were used to explore the relationships between fish assemblages and environmental factors and multiple regression analysis was used to explore the relationships between each fish species and environmental factors. In the analysis of habitat suitability index, it was found that Capoeta semifasciolata preferred the habitats with slower flow velocity, deeper water depth, and the substrates with cobble (particle size 64 ~ 256mm). Knowing the habitat preferences of species could help governments making more comprehensive conservation policies in the future.

    摘要 I Extended Abstract I I 謝誌 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 前言 1 1.1 研究動機與目的 1 1.2 研究假設 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 土地利用與河川水質 4 2.2 魚類與環境因子 6 2.3 伏流水 8 2.3.1 伏流水之定義 8 2.3.2 伏流水之介紹 9 2.3.3 水質差異 12 2.4 魚類棲地適合度指數 14 第三章 研究方法 15 3.1 研究區域 15 3.2 採樣時間 19 3.3 數據收集 20 3.3.1 微測壓管之應用 20 3.3.2 魚類採樣 23 3.3.3 水質調查 24 3.3.4 棲息地調查 25 3.4統計方法 27 3.4.1 平均數檢定與無母數檢定 27 3.4.2 變異數膨脹因子 35 3.4.3 排序分析 35 3.4.4 蒙地卡羅排列檢定 38 3.4.5 複迴歸分析 39 第四章 結果與討論 40 4.1 不同地區地表逕流水質差異分析、物種和環境之關聯性 40 4.1.1 水質差異分析 40 4.1.2 魚類組成 45 4.1.3 魚類群聚和環境因子之關聯性 47 4.2 不同時間下地表逕流水質差異分析、物種和環境之關聯性 49 4.2.1 屋背溝區 49 4.2.2 下游區 59 4.3 單一物種與環境因子相關性 69 4.4 地表水水質和伏流水水質差異分析 72 4.5 伏流水上湧、下滲水質差異分析 77 4.6 半紋小鲃之棲地適合度指數 79 4.6.1 半紋小鲃流速棲地適合度指數 79 4.6.2 半紋小鲃水深棲地適合度指數 80 4.6.3 半紋小鲃底質棲地適合度指數 81 第五章 結論與建議 82 5.1 結論 82 5.2 建議 84 第六章 參考文獻 85 附錄 93 附錄1. 電器採集許可公文 93 附錄2. 採樣座標 97 附錄3. 2021年一號水門區、屋背溝區和下游區水質差異檢定 99 附錄4. 2014年、2021年屋背溝區水質差異檢定 101 附錄5. 2013年、2019年、2021年下游區水質差異檢定 102 附錄6. 地表逕流水質和伏流水水質差異 104 附錄7. 伏流水上湧和下滲水質差異 108

    Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. Flow and storage in groundwater systems. Science, 296(5575), 1985-1990. (2002).
    Amarathunga, A. A. D., & Kazama, F. Impact of Land Use on Surface Water Quality: A Case Study in the Gin River Basin, Sri Lanka. Asian Journal of Water Environment and Pollution, 13(3), 1-13. (2016).
    Amiri, B. J., & Nakane, K. Modeling the Linkage Between River Water Quality and Landscape Metrics in the Chugoku District of Japan. Water Resources Management, 23(5), 931-956. (2009).
    Bain, M. B., Finn, J. T., & Booke, H. E. A quantitative method for sampling riverine microhabitats by electrofishing. North American Journal of Fisheries Management, 5(3B), 489-493. (1985).
    Balestrini, R., Arese, C., Delconte, C. A., Lotti, A., & Salerno, F. Nitrogen removal in subsurface water by narrow buffer strips in the intensive farming landscape of the Po River watershed, Italy. Ecological Engineering, 37(2), 148-157. (2011).
    Baxter, C. V., Hauer, F. R., & Woessner, W. W. Measuring groundwater-stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. (2003).
    Bovee, K. D., Milhous, R. T., & Turow, J., Hydraulic simulation in instream flow studies: theory and techniques: Department of the Interior, Fish and Wildlife Service, Office of Biological …, (1978).
    Broussard, W., & Turner, R. E. A century of changing land-use and water-quality relationships in the continental US. Frontiers in Ecology and the Environment, 7(6), 302-307. (2009).
    Brown, L. R. Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California. Environmental Biology of Fishes, 57(3), 251-269. (2000).
    Chouinard, P. M., & Dutil, J. D. The structure of demersal fish assemblages in a cold, highly stratified environment. Ices Journal of Marine Science, 68(9), 1896-1908. (2011).
    Darwin, C. On the origin of species (1859).
    Ding, J., Jiang, Y., Fu, L., Liu, Q., Peng, Q. Z., & Kang, M. Y. Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China. Water, 7(8), 4427-4445. (2015).
    Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., . . . Thornbrugh, D. J. Eutrophication of US Freshwaters: Analysis of Potential Economic Damages. Environmental Science & Technology, 43(1), 12-19. (2009).
    dos Santos, N. C. L., de Santana, H. S., Ortega, J. C. G., Dias, R. M., Stegmann, L. F., Araujo, I. M. D., . . . Agostinho, A. A. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia, 802(1), 245-253. (2017).
    Duarte, G., Segurado, P., Haidvogl, G., Pont, D., Ferreira, M. T., & Branco, P. Damn those damn dams: Fluvial longitudinal connectivity impairment for European diadromous fish throughout the 20th century. Science of the Total Environment,761, 12. (2021).
    Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Leveque, C., . . . Sullivan, C. A. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182. (2006).
    Fernald, A. G., Landers, D. H., & Wigington, P. J. Water quality changes in hyporheic flow paths between a large gravel bed river and off-channel alcoves in Oregon, USA. River Research and Applications, 22(10), 1111-1124. (2006).
    Fischer, J. R., & Paukert, C. P. Habitat relationships with fish assemblages in minimally disturbed Great Plains regions. Ecology of Freshwater Fish, 17(4), 597-609. (2008).
    Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., . . . Gibbs, H. K. Global consequences of land use. Science, 309(5734), 570-574. (2005).
    Fowler, R. T., & Scarsbrook, M. R. Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed rivers. New Zealand Journal of Marine and Freshwater Research, 36(3), 471-482. (2002).
    Francis, M. P., Hurst, R. J., McArdle, B. H., Bagley, N. W., & Anderson, O. F. New Zealand demersal fish assemblages. Environmental Biology of Fishes, 65(2), 215-234. (2002).
    Franken, R. J. M., Storey, R. G., & Williams, D. D. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia, 444(1-3), 183-195. (2001).
    Garner, P. SUITABILITY INDEXES FOR JUVENILE O+ ROACH RUTILUS-RUTILUS (L) USING POINT ABUNDANCE SAMPLING DATA. Regulated Rivers-Research & Management, 10(2-4), 99-104. (1995).
    Gavioli, A., Mancini, M., Milardi, M., Aschonitis, V., Racchetti, E., Viaroli, P., & Castaldelli, G. Exotic species, rather than low flow, negatively affect native fish in the Oglio River, Northern Italy. River Research and Applications, 34(8), 887-897. (2018).
    Gerke, M., Hübner, D., Schneider, J., & Winkelmann, C. Can top-down effects of cypriniform fish be used to mitigate eutrophication effects in medium-sized European rivers? Science of the Total Environment, 755, 142547. (2021).
    Grimm, N. B. NITROGEN DYNAMICS DURING SUCCESSION IN A DESERT STREAM. Ecology, 68(5), 1157-1170. (1987).
    Hancock, P. J., Boulton, A. J., & Humphreys, W. F. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater. Hydrogeology Journal,13(1), 98-111. (2005).
    Heiner, M., Higgins, J., Li, X. H., & Baker, B. Identifying freshwater conservation priorities in the Upper Yangtze River Basin. Freshwater Biology, 56(1), 89-105. (2011).
    Hendricks, S. P. MICROBIAL ECOLOGY OF THE HYPORHEIC ZONE - A PERSPECTIVE INTEGRATING HYDROLOGY AND BIOLOGY. Journal of the North American Benthological Society, 12(1), 70-78. (1993).
    Hester, E. T., Cardenas, M. B., Haggerty, R., & Apte, S. V. The importance and challenge of hyporheic mixing. Water Resources Research, 53(5), 3565-3575. (2017).
    Hinojosa, L. F., Armesto, J. J., & Villagrán, C. Are Chilean coastal forests pre‐Pleistocene relicts? Evidence from foliar physiognomy, palaeoclimate, and phytogeography. Journal of Biogeography, 33(2), 331-341. (2006).
    Hubner, D., Gerke, M., Fricke, R., Schneider, J., & Winkelmann, C. Cypriniform fish in running waters reduce hyporheic oxygen depletion in a eutrophic river. Freshwater Biology, 65(9), 1518-1528. (2020).
    Humpl, M., & Pivnicka, K. Fish assemblages as influenced by environmental factors in streams in protected areas of the Czech Republic. Ecology of Freshwater Fish, 15(1), 96-103.(2006).
    Jones Jr, J., Holmes, R., Fisher, S., & Grimm, N. Chemoautotrophic production and respiration in the hyporheic zone of a Sonoran Desert stream. (1994).
    Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials:A review. Chemosphere, 229, 142-159. (2019).
    Kang, J. H., Lee, S. W., Cho, K. H., Ki, S. J., Cha, S. M., & Kim, J. H. Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin. Water Research, 44(14), 4143-4157. (2010).
    Kawanishi, R., Dohi, R., Fujii, A., Inoue, M., & Miyake, Y. Vertical migration in streams: seasonal use of the hyporheic zone by the spinous loach Cobitis shikokuensis. Ichthyological Research, 64(4), 433-443. (2017).
    Kawanishi, R., Inoue, M., Dohi, R., Fujii, A., & Miyake, Y. The role of the hyporheic zone for a benthic fish in an intermittent river: a refuge, not a graveyard. Aquatic Sciences, 75(3), 425-431. (2013).
    Kim, H., Lee, J. Y., Park, Y., Hyun, Y., & Lee, K. K. Groundwater and stream water exchange revealed by water chemistry in a hyporheic zone of agricultural area. Paddy and Water Environment, 12(1), 89-101. (2014).
    Larson, D. M., Dodds, W. K., & Veach, A. M. Removal of Woody Riparian Vegetation Substantially Altered a Stream Ecosystem in an Otherwise Undisturbed Grassland Watershed. Ecosystems, 22(1), 64-76. (2019).
    Lee, P. Y., & Suen, J. P.. Comparing Habitat Suitability Indices (HSIs) Based on Abundance and Occurrence Data. North American Journal of Fisheries Management, 33(1), 89-96. (2013).
    Lee, S. W., Hwang, S. J., Lee, S. B., Hwang, H. S., & Sung, H. C. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning, 92(2), 80-89. (2009).
    Legendre, P., & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271-280. (2001).
    Lepš, J., & Šmilauer, P., Multivariate analysis of ecological data using CANOCO: Cambridge university press, (2003).
    Li, J. H., Huang, L. L., Zou, L. M., Kano, Y., Sato, T., & Yahara, T. Spatial and temporal variation of fish assemblages and their associations to habitat variables in a mountain stream of north Tiaoxi River, China. Environmental Biology of Fishes, 93(3), 403-417. (2012).
    Liermann, C. R., Nilsson, C., Robertson, J., & Ng, R. Y. Implications of Dam Obstruction for Global Freshwater Fish Diversity. Bioscience, 62(6), 539-548. (2012).
    Liu, F., Wang, J., Zhang, F. B., Liu, H. Z., & Wang, J. W. Spatial organisation of fish assemblages in the Chishui River, the last free-flowing tributary of the upper Yangtze River, China. Ecology of Freshwater Fish, 30(1), 48-60. (2021).
    Liu, X. P., Zhang, W. J., Yang, F., Zhou, X., Liu, Z. J., Qu, F., . . . Tang, X. G. Changes in vegetation-environment relationships over long-term natural restoration process in Middle Taihang Mountain of North China. Ecological Engineering, 49, 193-200. (2012).
    Malard, F., Tockner, K., Dole-Olivier, M. J., & Ward, J. V. A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshwater Biology, 47(4), 621-640. (2002).
    Malcolm, I. A., Soulsby, C., Youngson, A. F., & Petry, J. Heterogeneity in ground water-surface water interactions in the hyporheic zone of a salmonid spawning stream. Hydrological Processes, 17(3), 601-617. (2003).
    Mims, M. C., & Olden, J. D. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshwater Biology, 58(1), 50-62. (2013).
    Mota, M., Sousa, R., Araujo, J., Braga, C., & Antunes, C. Ecology and conservation of freshwater fish: time to act for a more effective management. Ecology of Freshwater Fish, 23(2), 111-113. (2014).
    Murphy, C. A., Taylor, G., Pierce, T., Arismendi, I., & Johnson, S. L. Short-term reservoir draining to streambed for juvenile salmon passage and non-native fish removal. Ecohydrology, 12(6), 9. (2019).
    Orghidan, T. Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch. Hydrobiol, 55(3), 392-414. (1959).
    Orghidan, T. Un nou domeniu de viata acvatica subterana:‘biotopul hiporeic’. Buletin Stiintific sectia de Biologie si stiinte Agricole si sectia de Geologie si Geografie, 7(3), 657-676. (1955).
    Piria, M., Simonovic, P., Zanella, D., Caleta, M., Sprem, N., Paunovic, M., . . . Treer, T. Long-term analysis of fish assemblage structure in the middle section of the Sava River - The impact of pollution, flood protection and dam construction. Science of the Total Environment, 651, 143-153. (2019).
    Platts, W. S., Megahan, W. F., & Minshall, G. W., Methods for evaluating stream, riparian, and biotic conditions (Vol. 138): US Department of Agriculture, Forest Service, Intermountain Forest and Range …, (1982).
    Rahel, F. J. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it's a small world after all. Freshwater Biology, 52(4), 696-710. (2007).
    Ramiao, J. P., Cassio, F., & Pascoal, C. Riparian land use and stream habitat regulate water quality. Limnologica, 82, 8. (2020).
    Rashid, Z. A., Amal, M. N. A., & Shohaimi, S. Water Quality Influences on Fish Occurrences in Sungai Pahang, Maran District, Pahang, Malaysia. Sains Malaysiana, 47(9), 19411951. (2018).
    Rodrigues, V., Estrany, J., Ranzini, M., de Cicco, V., Martin-Benito, J. M. T., Hedo, J., & Lucas-Borja, M. E. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Corrego Agua Limpa, Sao Paulo (Brazil). Science of the Total Environment, 622, 1553-1561. (2018).
    Sadys, M., Strzelczak, A., Grinn-Gofron, A., & Kennedy, R. Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59(1), 25-36. (2015).
    Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. Global Water Pollution and Human Health. In A. Gadgil & D. M. Liverman (Eds.), Annual Review of Environment and Resources, Vol 35 (Vol. 35, pp. 109-136). Palo Alto: Annual Reviews. (2010).
    Sear, D. A., Pattison, I., Collins, A. L., Newson, M. D., Jones, J. I., Naden, P. S., & Carling, P. A. Factors controlling the temporal variability in dissolved oxygen regime of salmon spawning gravels. Hydrological Processes, 28(1), 86-103. (2014).
    Sharma, S., Roy, A., & Agrawal, M. Spatial variations in water quality of river Ganga with respect to land uses in Varanasi. Environmental Science and Pollution Research, 23(21), 21872-21882. (2016).
    Shuai, F. M., Li, X. H., Chen, F. C., Li, Y. F., & Lek, S. Spatial patterns of fish assemblages in the Pearl River, China: environmental correlates. Fundamental and Applied Limnology, 189(4), 329-340.(2017).
    Simonovic, P., Piria, M., Zuliani, T., Ilic, M., Marinkovic, N., Kracun-Kolarevic, M., & Paunovic, M. Characterization of sections of the Sava River based on fish community structure. Science of the Total Environment, 574, 264-271. (2017).
    Statzner, B., Gore, J. A., & Resh, V. H. HYDRAULIC STREAM ECOLOGY - OBSERVED PATTERNS AND POTENTIAL APPLICATIONS. Journal of the North American Benthological Society, 7(4), 307-360. (1988).
    Steele, J. A., Countway, P. D., Xia, L., Vigil, P. D., Beman, J. M., Kim, D. Y., . . . Fuhrman, J. A. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. Isme Journal, 5(9), 1414-1425. (2011).
    Stone, R. Mayhem on The Mekong. Science, 333(6044), 814-818. (2011).
    Strayer, D. L., & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society, 29(1), 344-358. (2010).
    Sutela, T., Vehanen, T., & Jounela, P. Response of fish assemblages to water quality in boreal rivers. Hydrobiologia, 641(1), 1-10. (2010).
    Tanaka, M. O., de Souza, A. L. T., Moschini, L. E., & de Oliveira, A. K. Influence of watershed land use and riparian characteristics on biological indicators of stream water quality in southeastern Brazil. Agriculture Ecosystems & Environment, 216, 333-339. (2016).
    Tilman, D., Balzer, C., Hill, J., & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences, 108(50), 20260-20264.(2011).
    Tran, C. P., Bode, R. W., Smith, A. J., & Kleppel, G. S. Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecological Indicators, 10(3), 727-733. (2010).
    Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., & Bencala, K. E. Retention and transport of nutrients in a third‐order stream in northwestern California: Hyporheic processes. Ecology, 70(6), 1893-1905. (1989).
    Valett, H. M., Fisher, S. G., & Stanley, E. H. PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE HYPORHEIC ZONE OF A SONORAN DESERT STREAM. Journal of the North American Benthological Society, 9(3), 201-215.(1990).
    Vervier, P., Gibert, J., Marmonier, P., & Dole-Olivier, M.-J. A perspective on the permeability of the surface freshwater-groundwater ecotone. Journal of the North American Benthological Society, 11(1), 93-102. (1992).
    Wang, J. M., Wang, H. D., Cao, Y. G., Bai, Z. K., & Qin, Q. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Scientific Reports, 6, 11.(2016).
    Ward, J., Tockner, K., Arscott, D. B., & Claret, C. Riverine landscape diversity. Freshwater Biology, 47(4), 517-539. (2002).
    White, D. S. PERSPECTIVES ON DEFINING AND DELINEATING HYPORHEIC ZONES. Journal of the North American Benthological Society, 12(1), 61-69. (1993).
    Wildi, O. Evaluating the Predictive Power of Ordination Methods in Ecological Context. Mathematics, 6(12), 14. (2018).
    Wondzell, S. M., & Swanson, F. J. Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream. II: Nitrogen cycling. Journal of the North American Benthological Society, 15(1), 20-34. (1996).
    Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., . . . Chauvet, E. Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning. Science, 336(6087), 1438-1440. (2012).
    Yan, J., Xu, Y., Sui, J. X., Li, X. Z., Wang, H. F., & Zhang, B. L. Long-term variation of the macrobenthic community and its relationship with environmental factors in the Yangtze River estuary and its adjacent area. Marine Pollution Bulletin, 123(1-2), 339-348.(2017).
    Zampella, R. A., Procopio, N. A., Lathrop, R. G., & Dow, C. L. Relationship of land-use/land-cover patterns and surface-water quality in the Mullica River basin. Journal of the American Water Resources Association, 43(3), 594-604. (2007).
    Zarnetske, J. P., Haggerty, R., Wondzell, S. M., & Baker, M. A. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research: Biogeosciences, 116(G1). (2011).
    何宗翰.內科部研究能力課程(二)連續型變數之統計檢定:平均數檢定與無母數檢定
    網路資源取自http://sub.chimei.org.tw/57300/images/05_research/1081125.pdf
    吳明隆. SPSS 操作與應用: 變異數分析實務:五南圖書出版股份有限公司, (2007).
    吳統雄.多元判定係數與標準化迴歸係數的詮釋. (2021).網路資源取自
    http://tx.libera l.ntu.edu.tw/~PurpleWoo/Methodology/Analy-TxStatisticsCanon-Multi_Regression.htm
    呂映昇.物理環境因子與魚類棲地喜好度之關係-多變量分析之應用。國立成功大學水
    利及海洋工程學系碩士論文,台南(2009).https://hdl.handle.net/11296/7mbb26
    李鎮宇.基於功能特徵方法評估渠道化工程對魚類群落的影響。國立成功大學水利及
    海洋工程學系碩士論文,台南市。(2019). 取自https://hdl.handle.net/11296/6778j7
    周銘泰 & 高瑞卿.台灣淡水及河口魚圖鑑 (Vol. 18):晨星出版. (2011).
    林馳源.伏流水對地表逕流水質與魚類影響之研究。國立成功大學水利及海洋工程學
    系碩士論文,台南市。(2013).取自https://hdl.handle.net/11296/w4f9g6
    林震岩.多變量分析: SPSS 的操作與應用.台北市:智勝文化事業有限公司. (2012).
    邵廣昭.臺灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw, (2021-5-11)
    陳孟漢.乾季渠道型河床垂直通量估算。國立成功大學水利及海洋工程學系碩士論文,
    台南市。(2020).取自https://hdl.handle.net/11296/c3m9hm
    陳義雄 & 方力行.台灣淡水及河口魚類誌.國立海洋生物博物館籌備處, (1999).
    游志弘.地表逕流與伏流水交換對水質特性相關性之探討。國立成功大學水利及海洋
    工程學系碩士論文,台南市。(2014). 取自https://hdl.handle.net/11296/jgn67t
    葉柏緯.伏流水對魚類棲地之影響─以五溝水湧泉濕地為例。國立成功大學水利及海
    洋工程學系碩士論文,台南市。(2014).取自https://hdl.handle.net/11296/24e24e
    經濟部水利署水利規劃試驗所.(2021).網路資源取自
    https://www.wrap.gov.tw/pro22.aspx?type=0102000000
    劉晉坤、邱郁文、黃大駿. 五溝濕地棲地營造及保育. (2019).

    下載圖示 校內:2023-07-06公開
    校外:2023-07-06公開
    QR CODE