| 研究生: |
楊玫琳 Yang, Mei-Lin |
|---|---|
| 論文名稱: |
RNA干擾現象對於抑制腸病毒71型複製能力之研究 Inhibition of enterovirus 71 replication by double-stranded RNA-mediated RNA interference |
| 指導教授: |
吳文鑾
Wu, Wen-Luan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 腸病毒71型 、RNA干擾 |
| 外文關鍵詞: | dsRNA, RNAi, EV71, siRNA |
| 相關次數: | 點閱:55 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1998年在台灣暴發腸病毒的大流行,最主要是由腸病毒71型引起,除了手足口病徵之外,有些病例中會引起腦炎、無菌性髓膜炎而造成流行性神經麻痺後遺症,嚴重者會導致死亡,其中嬰兒和小孩為最主要的感染者。有鑑於目前尚無有效疫苗抑制腸病毒71型的感染,因此致力於發展腸病毒疫苗已成為重要目標。RNAi干擾現象是由21-nt siRNAs引起基因沉默的現象,近年來利用RNAi抑制基因表現的機制已在哺乳動物細胞內被廣泛研究。目前已有許多研究指出RNAi可用於哺乳動物細胞對抗病毒的感染上。因此本實驗根據RNAi機制特性,使用長片段dsRNA應用於抑制腸病毒71型的複製。首先利用pol II啟動子轉錄長片段dsRNA,讓RNAi抑制效用比較穩定,因此建構兩個含不同pol II啟動子的載體,分別為(1) pTCY載體:帶有β-actin啟動子可持續於細胞內表現基因,(2) p2-5A載體:含有2'-5'(A)n酵素合成酶基因啟動子,其受干擾素調控基因表現的能力。當腸病毒71型感染細胞時,病毒表現2A蛋白質切酶為切割病毒蛋白之重要切酶,因此選擇2A基因做為本實驗之標的基因。接著,將大小約為450 bp之2A基因片段以正反接方式接入pTCY和p2-5A載體,命名其為pTCY-ds2A及p2-5A-ds2A。將構築好的兩載體分別轉染Vero細胞後,以腸病毒液感染轉染ds2A的Vero細胞,得到抑制病毒能力較高的細胞株Vero/pTCY-ds2A-2和Vero/p2-5A-ds2A-2。根據細胞病變現象分析,轉染ds2A的細胞株抑制病毒能力高於正常細胞1000倍,且可減少細胞死亡現象。進一步利用RT-PCR檢測腸病毒71型mRNA是否因RNAi作用而減少,以3D基因作為檢測標準,此基因會轉譯為聚合酶,可使腸病毒71型進行複製;根據結果顯示Vero/pTCY-ds2A-2和Vero/p2-5A-ds2A-2兩細胞株皆減少腸病毒mRNA的複製。另分析細胞凋亡情形,發現轉染ds2A的兩細胞株可減少細胞DNA斷裂。經觀察RNAi效用的持續性結果顯示,Vero/pTCY-ds2A-2和Vero/p2-5A-ds2A-2細胞株皆可維持RNAi抑制能力11~14天;初步以西方轉漬法分析PKR蛋白質表現,在無病毒感染細胞的情況之下,轉染ds2A的兩細胞株內,PKR蛋白質表現量低而無明顯差別,顯示dsRNA的存在可能不誘導受干擾素調控基因的表現。為了證實細胞抗病毒現象確實與RNAi有關,利用Vero/pTCY-ds2A-2、Vero/p2-5A-ds2A-2和Vero/pTCY-dsE1A進行腸病毒感染實驗,觀察結果Vero/pTCY-dsE1A細胞株大部分細胞死亡和無轉染之Vero細胞並無差異,表示細胞病變具有專一性。綜合以上實驗,利用病毒2A 蛋白切酶基因長片段dsRNA而引起的基因沉默現象,可有效用於抑制腸病毒71型複製。
In 1998, an epidemic of hand-foot-and-mouth disease caused by enterovirus 71 (EV71) affected thousands of children in Taiwan. In a few cases, more serious symptoms were developed, such as polio-like paralysis, encephalitis, sometimes even resulting in death. Currently, there is no specific treatment or vaccine for this disease. Recently, RNA interference (RNAi) provide an alternative approach with 21-nucleotide small interfering RNA (siRNA) to specifically down-regulate cellular as well as viral gene expression in mammalian cells. In this study, using EV71 infection as a model system, we demonstrated that long double-strand RNA (dsRNA)-mediated RNAi can be effectively used to achieve specific silencing of EV71 replication. First, in order to maintain a better RNAi effect, pol II promoter was used to drive long dsRNA. Two different vectors, pTCY being drived with a β-actin promoter can express gene stably in the cells, and p2-5A being drived with a 2',5'-oligoadenylate synthetase gene promoter can express gene only after interferon induction, were constructed. In addition, previous researches indicated that EV71 2A protease plays an important role in cleavage of EV71 polyprotein. Thus, EV71 2A gene was selected as a target sequence for RNAi. Two dsRNA constructs, pTCY-ds2A and p2-5A-ds2A, containing 450 bp sense and anti-sense fragments of EV71 2A gene were generated. After transfection of pTCY-ds2A and p2-5A-ds2A to Vero cells, two stable clones, Vero/pTCY-ds2A-2 and Vero/2-5A-ds2A-2, were selected for further investigation. These two transfected cell clones expressing ds2A produced fewer virus particles and the inhibitory effects of virus replication were higher (1000-fold) than those of the non transfected Vero cells. Further experiment of detection of the expression of EV71 3D gene, which encodes viral RNA polymerase for EV71 replication, by RT-PCR showed that both Vero/pTCY-ds2A-2 and Vero/2-5A-ds2A-2 produced low amount of 3D mRNA. The phenomena of the DNA fragmentation after EV71 infection was also reduced. The duration of EV71-specific RNAi activity in both Vero/pTCY-ds2A-2 and Vero/2-5A-ds2A-2 were maintained for 11~14 days. Western blotting analysis for detection of PKR expression showed low levels in both transfected cell clones without virus challenge. These observations indicated that long dsRNA could not induce an interferon-stimulated gene, PKR. Furthermore, to confirm that the anti-viral effect was specific from RNAi, Vero/pTCY-ds2A-2,Vero/2-5A-ds2A-2 and Vero/pTCY-dsE1A were used for EV71 infection. The result revealed that the susceptibilities of Vero/pTCY-dsE1A and non transfected Vero cells to EV71-induced cell death were the same. In summary, this study has shown that the inhibition of viral 2A gene expression by long dsRNA-mediated RNA interference might ultimately be useful in treatment of EV71 replication.
Bass B. (2000). Double-stranded RNA as a template for gene silencing. Cell 101: 235-238.
Benech P., Vigneron M., Peretz D., Reverl M. and Chebath J. (1987). Interferon-Responsive regulatory elements in the promoter of the human 2',5'-oligo(A) synthetase gene. Molecular and Cellular Biology. 7:4498-4504.
Bernstein E., Caudy A., Hammond S. and Hannon G. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363-366.
Billy E., Brondani V., Zhang H., Müller U. and Filupowicz W. (2001). Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proceedings of National Academy Science of the United States of America 98: 14428-14433.
Bridge A. J., Pebernard S., Ducraux A., Nicoulaz A.L. and Iggo R. (2003). Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genetics 34:263-264.
Brummelkamp T. R., Bernards R. and Agami R. (2002a). A system for stable expression of short interfering RNAs in mammalian cells. Science 295:550-553.
Brummelkamp T. R., Bernards R. and Agami R. (2002b). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243-247.
Caplen N. J., Parrish S., Imani F., Fire A. and Morgan R. A. (2001). Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proceedings of National Academy Science of the United States of America 98:9742-9747.
Capodici J., KarikÓ K. and Weissman D. (2002). Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. Journal of Immunology 169:5196-5203.
Clemens J., Worby C., Simonson-Leff N., Muda M., Maehama T., Hemmings B. A. and Dixon J. (2000). Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of National Academy Science of the United States of America 97: 6499-6503.
De Benedetti A. and Baglioni C. (1984). Inhibition of mRNA binding to ribisomes by localized activation of dsRNA-independent protein kinase. Nature 311:79-81.
Devroe E. and Silver P. A. (2002). Retrovirus-delivered siRNA. BMC Biotechnology 2:15.
Dong B., Niwa M., Walter P. and Silverman R.H. (2001). Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p. RNA 7:361-373.
Donzé O., Deng J., Curran J., Sladek R., Picard D. and Sonenberg N. (2004). The protein kinase PKR: a molecular clock that sequentially activated survival and death programs. European Molecular Biology Organization 23:564-571.
Elbashir S. M., Harborth J., Weber K. and Tuschl T. (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 20:199-213.
Elbashir S. M., Lendeckel W. and Tuschel T. (2001a). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes and Development 15:188-200.
Elbashir S. M., Martinez J., Patkaniowska A., Lendeckel W. and Tuschel T. (2001b). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. European Molecular Biology Organization 20:6877-
6888.
Fire A. (1999). RNA-triggered gene silencing. Trends in Genetics 15:358-363.
Glenn R., Grakoui A. and Rice C. M. (2003). Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proceedings of National Academy Science of the United States of America 100:235-240.
Gitlin L., Karelsky S. and Andino R. (2002). Short
interfering RNA confers intracellular antiviral immunity in human cells. Nature 418:430-434.
Grishok A., Pasquinelli A. E., Conte D., Li N., Parrish S., Ha I., Ballie D. L., Fire A., Ruvkun G. and Mello C. C. (2001). Genes and mechanisms related to RNA interference regulation expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23-34.
Harborth J., Elbashir S. M., Bechert K., Tuschl T. and Weber K. (2002). Identification of essential genes in cultured mammalian cells using small interfering RNAs. Journal of Cell Science 114:4557-4565.
Hammond S. M., Bernstein E., Beach D. and Hannon G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293-296.
Hannon G. J. (2002). RNA interference. Nature 418:244-251.
Ho M., Chen E. R., Hsu K. H., Twu S. J., Chen K. T., Tsai S. F., Wang J. R. and Shih S. R. (1999). An epidemic of enterovirus 71 infection in Taiwan. The New England Journal Medicine 341:929-935.
Jacque J. M., Triques K. and Stevenson M. (2002). Modulation of HIV-1 replication by RNA interference. Nature 418:435-438.
Jesen S., Gassama M. P. and Heidmann T. (1999). Taming of transposable elements by homology-dependent gene silencing. Nature Genetics 21:209-212.
Kadereit S., Xu H., Engeman T., Yang Y., Fairchild R. and Williams B. (2000). Negative regulation of CD8+ T cell function by the IFN-induced and double-stranded RNA-activated kinase PKR. Journal of Immunology 165:6896-6901.
Kanda T., Kusov Y., Yokosuka O. and Gauss-Müller V. (2004). Interference of hepatitis A virus replication by small interfering RNAs. Biochemical and Biophysical Research Communications 318:341-345.
Kao R. L., Kung S. H., Hsu Y. Y. and Lin W. T. (2002). Infection with enterovirus 71 or expression its 2A protease induce apopototic cell death. Journal of General Virology 83:1367-1376.
Ketting R. F., Fischer S. E., Bernstein E., Sijen T., Hannon G. J. and Plasterk R. H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in development timing in C. elegans. Gene and Development 15:2654-2659.
Ketting R. F., Haverkamp H. A., van Luenen H. G. A. M. and Plasterk R. H. A. (1999). mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner Syndrome Helicase and RNaseD. Cell 99:133-141.
Kuwabara P. and Coulson A. (2000). RNAi--prospects for a
general technique for determining gene function. Parasitology Today 16:347-349.
Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
Lee C. Y. (2002). Double-stranded RNA induced RNA interference (RNAi) promotes anti-viral effect in A549 human lung cancer cells.
Lee N. S., Dohjima T., Bauer G., Li H., Li M. J., Ehsani A., Salvaterra P. and Rossi J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology 19:500-505.
Lee R. C., Feinbaum R. L. and Ambros V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854.
Mette M., Aufsatz W., Winden J., Matzke M. and Matzke A. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. European Molecular Biology Organization 19:5194-5201.
Novina C. D., Murry M. F., Dykxhoorn D. M., Beresford P. J., Riess J., Lee S. K., Collman R. G., Lieberman J., Shankar P. and Sharp P. A. (2002). siRNA-directed inhibition of HIV-1 infection. Nature Medicine 8:681-686.
Paddison P. J., Caudy A. A., Bernstein E. and Hannon G. J. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Gene and Development 16:948-958.
Paddison P. J. and Hannon G. J. (2002). RNA interference: the new somatic cell genetics? Cancer Cell 2:17-23.
Paul C. P., Good P. D., Winer I. and Engelke D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology 20:505-508.
Pebernard S. and Iggo R. D. (2004). Determinants of
interferon-stimulated gene induction by RNAi vectors. Differentiation 72:103-111.
Pfeifer A., Ikawa M., Dayn Y. and Verna I. M. (2002). Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proceedings of National Academy Science of the United States of America 99:2140-2145.
Phipps K. M., Martinez A., Lu J., Heinz B. A. and Zhao G. (2004). Small interfering RNA molecules as potential anti-human rhinovirus agents: in vitro potency, specificity, and mechanism. Antiviral Research 61:49-55.
Qin X. F., An D. S., Chen I. S. Y. and Baltimore D. (2003). Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proceedings of National Academy Science of the United States of America 100:183-188.
Qing G., McManus M. T., Nguyen T., Shen C. H., Sharp P. A., Eisen H. N. and Chen J. (2003). RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proceedings of National Academy Science of the United States of America 100:2718-2723.
Randall G., Grakoui A. and Rice C. M. (2003). Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proceedings of National Academy Science of the United States of America 100:235-240.
Ratcliff F., Harrison B. D. and Baucombe D. C. (1997). A similarity between viral defense and gene silencing in plants. Science 276:1558-1560.
Rubinson D. A., Dillon C. P., Kwiatkowski A. V., Siliver C., Yang L., Kopinja J., Zhang M., McManus M. T., Gertler F. B., Scott M. L. and Parijs L. V. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics 33:401-406.
Rutherford M. N., Hannigan G. E. and Williams B. R. G. (1988). Interferon-induced binding of nuclear factors to promoter element of 2-5A synthetase gene. European Molecular Biology Organization 7:751-759.
Saleh M. C., Van Rij R. P. and Andino R. (2004). RNA silencing in viral infections: insights from poliovirus. Virus Research 102:11–17.
Sambrook J., Fritsch E. F. and Maniatis T. (2001).
Molecular Cloning. A Laboratory Manual. 3rd ed. Cold Spring Habor Laboratory Press.
Sarkar S. N., Ghosh A., Wang H. W., Sung S. S. and Sen G. C. (1999). The nature of catalytic domain of 2',5' oligoadenylate synthetase. Journal of Biological Chemistry. 274:1848-1855.
Schmidt N. J., Lennette E. H. and Ho H. H. (1974). An apparently new enterovirus isolated from patients with disease of the central nervous system. Journal of Infection Disease 129:304-309.
Sen G. C. (2001). Viruses and interferons. Annual Review of Microbiology 55:255-281.
Sharp P. A. (1999). RNAi and double-strand RNA. Genes and
Development 13:139-141.
Shiau A. L., Liu C. W., Wang X. Y., Tsai C. Y. and Wu C. L.
(2002). A simple selection system of construction of recombinant gD- pesudorabies virus as a vaccine vector. Vaccine 20:1186-1195.
Shin S. R., Tsai K. N., Li Y. S., Chueh C. C. and Chan E. C. (2003). Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. Journal of Medical Virology 70:119-125.
Shinagawa T. and Ishii S. (2003). Generation of Ski-Knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Gene and Development 17:1340-1345.
Sijen T., Fleenor J., Simmer F., Thijssen K. L., Parrish S., Timmons L., Plasterk R H. A. and Fire A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465-476.
Sioud M. (2004). Therapeutic siRNAs. TRENDS in Pharmacological Science 25:22-28.
Sledz C. A., Holko M., de Veer M. J., Silverman R. H. and
Williams B. R. G. (2003). Activation of the interferon system by short-interfering RNAs. Nature Cell Biology 5:834-839.
Stein P., Svoboda P. and Schultz R. M. (2003). Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Developmental Biology 256:187-193.
Surabhi R. M. and Gaynor R. B. (2002). RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus 1 replication. Journal of Virology 76:12963-12973.
Szittya G., Molnár A., Sihavy D., Hornyik C. and Burgyán J. (2002). Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14:359-372.
Tabara H., Sarkissian M., Kelly W. G., Fleenor J., Grishok A., Timmons L., Fire A. and Mello C. C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99: 123-132.
Thompson S. R. and Sarnow P. (2003). Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 315:259-266.
Wang J. R., Taun Y. C., Tasi H. P., Yan J. J., Liu C. C. and Su I. J. (2002). Change of major genotype of enterorvirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. Journal of Clinical Microbiology 40:10-15.
Wilson J. A., Jayasena S., Khvorova A., Sabations S., Rodrigues-Gervais I. G., Arya S., Sarangi F., Harris-Brandts M., Beaulieu S. and Richardson C. D. (2003). RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proceedings of National Academy Science of the United States of America 100:2783-2788.
Wu C. N., Lin Y. C., Fann C. and Liao N. S. (2002). Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 20:895-904.
Yang S., Tutton S., Pierce E. and Yoon K. (2001). Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Molecular and Cellular Biology 21: 7807-7816.
Yu J. Y., DeRuiter S. L. and Turner L. (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proceedings of National Academy Science of the United States of America 99:6047-6052.