| 研究生: |
羅丹儒 Riley, Guillermo |
|---|---|
| 論文名稱: |
酒精性脂肪肝治療新進展:海藻糖與ω-3多元不飽和脂肪酸療法 Trehalose and Omega-3 Polyunsaturated Fatty Acids Therapy: A Promising New Approach for Non-Alcoholic Fatty Liver Disease |
| 指導教授: |
林錫璋
Lin, Xi-Zhang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 外文關鍵詞: | Non-alcoholic fatty liver disease, trehalose, omega-3 |
| 相關次數: | 點閱:79 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Background: Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common causes of chronic liver disease worldwide. Therefore, the development of new treatment strategies is imperative. The use of omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have demonstrated, in animal models and human clinical trials, to improve liver steatosis, liver function tests, cholesterol and serum triglycerides levels. Recently, an alpha-linked disaccharide named trehalose, showed to prevent NALFD development in an animal model. Trehalose inhibits a specific type of glucose transporter in the hepatocyte cell membrane, decreasing fructose uptake and subsequently leading to a starvation like environment triggering a cellular autophagy response.
Purpose: To evaluate, individually and in a combined way, the use of omega-3 PUFAs and trehalose in the prevention and treatment of NAFLD in a high fructose diet-induced animal model.
Experimental design: Male Wistar rats (37) were exposed to a high fructose diet (HFrD) 60% for 24 weeks. All rats were divided into six experimental groups: normal chow, NAFLD model, prophylaxis, trehalose, omega-3 PUFAs and trehalose + omega-3. Normal chow group was exposed to a regular rat diet. NAFLD model group was exposed only to HFrD. Prophylaxis group, was exposed to simultaneous treatment of trehalose and omega-3 PUFAs trehalose since the beginning of the HFrD for sixteen weeks. After 16 weeks of HFrD exposure, rats were expose to an eight-week treatment with trehalose at a dose of 3 mg/kg/day (trehalose), omega-3 PUFAs at a dose of 2.4 mg/kg/day (omega-3 PUFAs), and combined dosage of trehalose and omega-3 PUFAs (Trehalose + omega-3 PUFAs).
Results: The combine use of trehalose and omega-3 PUFAs prevents and reverse NAFLD histological and metabolic features (hyperglycemia, insulin resistance, hypertriglyceridemia, hypercholesterolemia), by a de novo lipogenesis downregulation and a beta oxidation upregulation mediated by the expression of the peroxisome proliferator activated receptor alpha (PPAR-α) and sterol regulatory element binding protein 1c (SREBP-1c), respectively.
Conclusions: The concomitant use of trehalose and omega-3 PUFAs prevent and reverse histological and metabolic features of NAFLD, through a de novo lipogenesis down regulation and a beta oxidation upregulation in a diet-induced animal model.
REFERENCES
1. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ, The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases., Hepatology, . 2017, vol. ;67 (pg. :328--357.)
2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M, Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes., Hepatology., 2016, vol. ;64 (pg. :73--84.)
3. Ekstedt M, Nasr P, Kechagias S, Natural history of NAFLD/NASH., Curr Hepatology Rep., 2017, vol. ;16 (pg. : 391--397.)
4. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ, Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans., J Clin Invest., 2009, vol. ;5 (pg. :1322–1334.)
5. Zang M, The Molecular Basis of Hepatic De Novo Lipogenesis in Insulin Resistance., Transcriptional regulation of de novo lipogenesis in liver,. 2016, (pg. :1--31.)
6. Dif N, Euthine V, Gonnet E, Laville M, Vidal H, Lefai E, Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs., Biochemical Journal,. 2006, vol. ;15 (pg. :179--188.)
7. Souza-Mello V, Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease., World J Hepatol,. 2015, vol. ;7(pg. :1012--1019.)
8. Schultz A, Neil D, Aguila MB, Mandarim-de-Lacerda CA, Hepatic Adverse Effects of Fructose Consumption Independent of Overweight/Obesity., Int J Mol Sci,. 2013, vol. ;14 (pg. :21873--21886.)
9. Lindqvist A, Baelemans A, Erlanson-Albertsson C, Effects of sucrose, glucose and fructose on peripheral and central appetite signals., Regul Pept,. 2008, vol. ;150 (pg. :26--32.)
10. Alwahsh SM, Gebhardt R, Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD)., Arch Toxicol,. 2017, vol. ;91 (pg. :1545--1563.)
11. Pachikian BD, Essaghir A, Demoulin JB, Neyrinck AM,Catry E, De Backer FC, Dejeans N, Dewulf EM, Sohet FM, Portois L, Deldicque L, Molendi-Coste O, Leclercq IA, Francaux M, Carpentier YA, Foufelle F, Muccioli GG, Cani PD, Delzenne NM, Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets., PLoS One,. 2011, vol. ;6 (e23365.)
12. Alwayn IP, Gura K, Nosé V, Zausche B, Javid P, Garza J, Verbesey J, Voss S, Ollero M, Andersson C, Bistrian B, Folkman J, Puder M, Omega-3 fatty acid supplementation prevents hepatic steatosis in a murine model of nonalcoholic fatty liver disease., Pediatr Res,. 2005, vol. ;57 (pg. : 445--452.)
13. Alwayn IP, Andersson C, Zauscher B, Gura K, Nosé V, Puder M, Omega-3 fatty acids improve hepatic steatosis in a murine model: potential implications for the marginal steatotic liver donor., Transplantation,. 2005, vol. ;79 (pg. :606--608.)
14. Helen M. Parker, Nathan A. Johnson, Catriona A. Burdon, Jeffrey S. Cohn, Helen T. O’Connor, Jacob George, Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis., Journal of Hepatology,. 2012, vol. ;56 (pg. : 944--954.)
15. Ueno T, Komatsu M, Autophagy in the liver: functions in health and disease., Nat Rev Gastroenterol Hepatol,. 2017, vol. ;14 (pg. :170--184.)
16. Fukuo Y, Yamashina S, Sonoue H, Arakawa A, Nakadera E, Aoyama T, Uchiyama A, Kon K, Ikejima K, Watanabe S, Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease., Hepatol Res,. vol. ;44 (pg. :1026--1036.)
17. Augustin, R, The protein family of glucose transport facilitators: It's not only about glucose after all., IUBMB Life,. 2010, vol. ;62 (pg. : 315--333.)
18. Karim S, Adams DH, Lalor PF, Hepatic expression and cellular distribution of the glucose transporter family., World J Hepatol,. 2012, vol. ;18 (pg. :6771--6781.)
19. DeBosch BJ, Chen Z, Finck BN, Chi M, Moley KH, Glucose Transporter-8 (GLUT8) Mediates Glucose Intolerance and Dyslipidemia in High-Fructose Diet-Fed Male Mice., Molecular Endocrinology,. 2013, vol. ;27 (pg. :1887--1896.)
20. DeBosch BJ, Chi M, Moley KH, Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization., Endocrinology,. 2012, vol. ;153 (pg. :4181--4191.)
21. Tanaka M, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease., Nat. Med,. 2004, vol. ;10 (pg. :148--154.)
22. Castillo K, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons., Autophagy,. 2013, vol. ;9 (pg. :1308--1320.)
23. Allyson L. Mayer AL, Higgins CB, Heitmeier MR, Kraft TE, Qian X, Crowley JR, Hyrc KL, Beatty WL, Yarasheski KE, Hruz PW, DeBosch BJ, SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy., Scientific Reports,. 2016, vol. ;6 (Article number: 38586.) doi:10.1038/srep38586.
24. DeBosch BJ, Heitmeier MR, Mayer AL, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis., Science signaling,. 2016, vol. ;9 doi:10.1126/scisignal.aac5472.
25. Wu SY, Lan SH, Cheng DE, Chen WK, Shen CH, Lee YR, et al. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation., Neoplasia,. 2011, vol. ;13 (pg. :1171--1182.)