| 研究生: |
黃淳知 Wong, Son-Chi |
|---|---|
| 論文名稱: |
狼尾草與廚餘利用好氧式生物滴濾床共醱酵水解纖維素產氫研究 Study on Hydrogen Production Potential Utilizing Leachate from Aerobic Bio-Leaching Bed Fed with Napier Grass and Kitchen Waste |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 231 |
| 中文關鍵詞: | 好氧式生物滴濾床 、廚餘 、狼尾草 、生化氫氣產能批次試驗 、纖維素水解 、變性梯度膠體電泳 、真菌族群分析 |
| 外文關鍵詞: | Aerobic Bio-Leaching Bed, Kitchen Waste, Napier Grass, Biochemical Hydrogen Potential test, cellulose degradation, Denaturing Gradient Gel Electrophoresis, analysis of fungi community |
| 相關次數: | 點閱:113 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在眾多生質能源原料中,木質纖維素被視為生質燃料和其他副產物主要源料,這是由於它們年產量大(4x109噸/年)的關係。狼尾草便是其中一種含有豐富纖維素的牧草,由於狼尾草具有容易種植、能在野生坡地等非種糧面積、生長速度快(一年可收割四次)、單位面積產量高、便宜、富含電子性(COD/TOC = 2.44 g COD/g TOC)的特點,所以我們以狼尾草作為這次產氫研究的主要基質,由於纖維素緊密且堅固的結構,加上其被半纖維素及木質素緊緊的包圍著,所以纖維素的水解成為整個生質能源的速率限制步驟。本研究分成兩個主要的部份,第一部份是開發一套生物系統---好氧式生物滴濾滲出床,以提高纖維素水解的效率。第二部份則是評估這套生物系統滲水液(產物)之厭氧生物產氫潛能。好氧式生物滴濾床為一多孔濾床固體醱酵反應器,用以承受高固體負荷及培養真菌優勢族群。另外,本研究加入廚餘作為輔助基質,用以提供額外容易利用的營養,如氮磷肥份,促進微生物生長。加入廚餘堆肥作為植種源,以提供大量及多樣性的、複合基質分解性的好氧微生物。利用自來水的沖洗,把狼尾草水解後的有機碳及流動性酵素沖出循環利用,這些有機碳帶著電子,供後續產氫程序產氫菌利用以促進產氫。
本研究先對狼尾草及廚餘的特性作分析及瞭解,狼尾草約有90%的固體物為有機體(TVS/TS=0.9)。固體態碳水化合物佔總乾重的70%,為一含固體碳水化合物豐富的基質,纖維素佔總乾重32%,COD/TOC為2.12,呈微氧化態碳,略低於狼尾草總質體比值。另一基質,廚餘為複雜有機廢棄物,富含高濃度的有機含量(VSS/SS)可達96%。總碳水化合物佔總乾重的40%,一半左右為可溶性的碳水化合物。總COD為1.53 g-O2/g-dry KW,溶解態的COD佔總COD的三分之一,COD/TOC為2.05,亦呈微氧化態有機碳,可被好氧菌分解。生物滴濾床植種源則為台南城西里好氧廚餘堆肥場,六槽廚餘堆肥中,各槽的總異營菌菌量,均在108 CFU/g-dry compost 左右。總異營真菌菌量則在106~108 CFU/g-dry compost。廚餘堆肥中有纖維素內切型水解酵素(Endo-β-1-4-glucanase)活性反應,隨著槽數(堆置時間)增加,酵素活性隨之增加,活性最高的為成品區腐熟廚餘堆肥,活性為1.4 U/g-dry compost。從DGGE分析中可見,廚餘堆肥中有多樣性的真菌族群,Candida, Fusarium, Trichoderma 均有在廚餘堆肥中出現。Aspergillus則沒有被發現。
本研究成功的把好氧式生物滴濾床從6 L放大至90 L(3年內),並進行半連續流自動化操作。在6 L好氧式生物滴濾床中,滲出混合液COD為49.5 g/L,主要成份為乳酸,約貢獻了49% COD,這些乳酸在後續的產氫潛能測試中,均被完全利用至低於儀器可偵測範圍。厭氧生物批次分解中,最高產氫速率及氫氣產率分別為2.13 L-H2 g-VSS-1d-1及0.04 L-H2 g-TCOD-1,可驗證廚餘經好氧分解之中間產物,可被厭氧產氫菌快速分解。經由T-RFLP的分生檢測分析結果得知,6 L 好氧式生物滴濾床出流水本身就富含產氫菌,且此產氫菌在批次馴養後會勝於連續流厭氧槽之植種菌源而成為優勢族群。經改良設計後,38 L 好氧式生物滴濾床成功的解決了濾床阻塞問題。在此廚餘混合狼尾草批分式好氧分解程序中,滲出液最高的總COD出現在第20天,為1,500 mg/L,滲出液淋洗出的總COD則佔原堆置物料總COD的1.2%。利用多因子實驗設計探討不同操作條件下,對好氧式生物滴濾床滲出液COD濃度之影響,發現在相同的出流水體積(即相同的水停留時間)下,增加沖水頻率,減少淋水量,比增加淋水量對沖出COD(在濃度及累積總量上)來得有效。最後改建的90 L好氧式生物滴濾床試程一中,為一次性流經濾床操作,水之停留時間為0.09天(2.16小時)。滲出液最高COD濃度出現在第7天,為1,200 mg/L。纖維素降解率為27%。試程二中,發現減少水固體塊狀物形成現象,並無助於滲出液中溶解態COD的增加。試程三中,增加水之停留時間至0.88天,滲出液最高總COD為1,200 mg/L,出現在批分式淋洗流程的第5天,纖維素的降解率為50%。試程四中,增加滴濾水之返送循環淋洗停留時間至8.85天,以促進混合基質之固態醱酵功能,滲出液最高總COD為1,500 mg/L,出現在第5天,纖維素的降解率為66%。因此,增加水之循環停留時間,能有效增加滴濾床內纖維素的降解率,但對於增加滲出液中總COD濃度,則沒有太大幫助。從DGGE分析中可見,從試程一到試程三,滴濾床內都有著十分多樣的真菌族群,Candida, Fusarium均有在廚餘堆肥中出現。Trichoderma , Aspergillus則沒有被發現。
Among potential bioenergy resources, lignocellulosics have been identified as the prime source of biofuels and other value-added products due to its enormous yield (about 4x109 tons/year). Napier Grass is a herbage which consists of abundant cellulose. Due to its advantages of easy planting, high-growing rate, high yield density per year, inexpensive and high electron density (COD/TOC = 2.44 g COD/g TOC), we decided to choose Napier Grass as the main substrate for this study. Cellulose, nevertheless, is difficult to hydrolyze due to its tight and rigid structure as well as the wrapping of hemicellulose and lignin. Therefore, cellulose hydrolysis is the rate limiting step in the whole bioenergy process. This study was divided into two main parts. The first part is to develop a biological system- Aerobic Bio-Leaching Bed (ABLB) for cellulose-hydrolyzing efficiency enhancement. The second part is to evaluate biohydrogen production potential utilizing the leachate of ABLB. Aerobic Bio-Leaching Bed is a solid-state fermentation bioreactor which can bear high-solid loading and is favorable for fungi cultivation. Kitchen waste is added as sub-substrate to provide extra-nutrient for encouraging microbial growth. Kitchen waste compost is added as seed to provide diverse and large quantity of microorganism. Tape water is added to flush out organic carbon which hydrolyzed from substrate and then the organic carbon which is carrying electron will go into the subsequent dark fermentation for hydrogen production.
The characteristics of Napier Grass and kitchen waste were analyzed in this study firstly. Napier Grass possesses 90% of organic solid(TVS/TS=0.9). Solid carbohydrate and cellulose was 70% and 32% of dry weight respectively, so Napier Grass was a solid carbohydrate-abundant substrate. Its COD/TOC was 2.12. Kitchen waste is a complex organic compound which contain up to 96% of VSS. Total carbohydrate is 40% of dry weight and half of them is soluble. Total COD is 1.53 g-O2/g-dry KW and one third of them is soluble. COD/TOC is 2.05. Seeding source came from kitchen waste compost in Cheng-Chi-Li kitchen waste collect center, Tainan. The average heterotrophic aerobic bacteria and total heterotrophic fungi was about 108 and 106~108 CFU/g-dry compost. There was Endo-β-1-4-glucanase activity on kitchen waste compost and the longer time the kitchen waste compost was piled, the higher the activity was. The highest activity which was 1.4 U/g-dry compost appeared in the mature compost pile. According to DGGE profile, there was diverse fungi community on kitchen waste compost. Candida, Fusarium, Trichoderma existed in kitchen waste compost but Aspergillus had not been found among six tanks of kitchen waste compost.
In this study, the scale up of Aerobic Bio-Leaching Bed from 6 L to 90 L and automated operation is successful. The leachate of 6 L Aerobic Bio-Leaching Bed contained COD 49.5 g/L and about 49% of COD was contributed by lactic acid. Lactic acid was utilized almost completely in the subsequent bio-hydrogen production test. The highest specific hydrogen production rate and hydrogen yield were 2.13 L-H2 g-VSS-1d-1and 0.04 L-H2 g-TCOD-1 respectively. According to the results of T-RFLP, the leachate of 6 L Aerobic Bio-Leaching Bed contained abundant hydrogen-producing bacteria and they became dominant after the bio-hydrogen production test. 38 L Aerobic Bio-Leaching Bed which bioreactor design was improved solved the blocking problem happened in 6 L Aerobic Bio-Leaching Bed. The highest total COD in its leachate was 1,500 mg/L on day 20. The total COD mass flushed out by leachate during the whole operation recovered about 1.2% of initial substrate COD. In the factorial experiment discussing the effect of different operational factors of Aerobic Bio-leaching Bed to leachate COD, the results showed that in the same leachate volume, i.e. the same passed time of water, increasing the flushing frequency and decreasing influent water volume is more efficient than increasing the volume of influent water for leachate COD enhancement (in both concentration and cumulative amount). In run 1 of Aerobic Bio-Leaching Bed, HRT was 0.09 day. The highest total COD in leachate was 1,200 mg/L on day 7 and cellulose degradation is 27%. In run 2, the results showed that reducing particle agglomeration had no influence on increasing soluble COD in leachate. In run 3, HRT was increased to 0.88 day. The highest total COD in leachate was 1,200 mg/L on day 5 and cellulose degradation is 50%. In run 4, HRT was increased to 8.85 days. The highest total COD in leachate was 1,500 mg/L on day 5 and cellulose degradation is 66%. Therefore, increasing HRT was favorable for increasing cellulose degradation percentage but had no influence on increasing the total COD in leachate. According to DGGE profile, there was diverse fungi community in Aerobic Bio-Leaching Bed from run 1 to 3. Candida and Fusarium, existed in it but Trichoderma and Aspergillus had not been found.
Ahamed A and Vermette P, Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions, Biochemical Engineering Journal 40(3):399-407 (2008).
Ahamed A and Vermette P, Effect of culture medium composition on Trichoderma reesei's morphology and cellulase production, Bioresource Technology 100(23):5979-5987 (2009).
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R and Stahl DA, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol. 56(6):1919-1925 (1990).
Anderson IC and Cairney JWG, Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques, Environmental Microbiology 6(8):769-779 (2004).
APHA, AWWA and WEF, Standard methods for the examination of water and wastewater, 21, American Public Health Association, Washington, DC, (2005).
Aro N, Pakula T and Penttilä M, Transcriptional regulation of plant cell wall degradation by filamentous fungi:719-739 (2005).
Auria R, Ortiz I, Villegas E and Revah S, Influence of growth and high mould concentration on the pressure drop in solid state fermentations, Process Biochemistry 30(8):751-756 (1995).
Bailey MJ, Adamitsch B, Rautio J, von Weymarn N and Saloheimo M, Use of a growth-associated control algorithm for efficient production of a heterologous laccase in Trichoderma reesei in fed-batch and continuous cultivation, Enzyme and Microbial Technology 41(4):484-491 (2007).
Bailey MJ and Tahtiharju J, Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy, Applied Microbiology and Biotechnology 62(2-3):156-162 (2003).
Barton AFM, Resource Recovery and Recycling, John Wiley, New York, (1979).
Berg JM, Tymoczko JL and Stryer L, Biochemistry, sixth, W. H. Freeman and Company, New York, (2007).
Bockris JOM, The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment, International Journal of Hydrogen Energy 27(7-8):731-740 (2002).
BP, BP Statistical Review of World Energy: (2009).
Brock TD, Thermophilic Microorganisms and Life at High Temperatures, Springer, USA, (1978).
Chellapandi P and Jani AA, Enhanced Endoglucanase Production by Soil Isolates of Fusarium sp and Aspergillus sp through Submerged Fermentation Process, Turkish Journal of Biochemistry-Turk Biyokimya Dergisi 34(4):209-214 (2009).
Cooney DG and Emerson R, Thermophilic Fungi, W.H. Freeman, USA, (1964)
Crawford JH, COMPOSTING OF AGRICULTURAL WASTES - A REVIEW, Process Biochemistry 18(1):14-& (1983).
Das D and Veziroglu TN, Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy 26(1):13-28 (2001).
Desvaux M, Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia:741-764 (2005).
Divne C, St疇hlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JKC, Teeri TT and Jones TA, The Three-Dimensional Crystal Structure of the Catalytic Core of Cellobiohydrolase I from Trichoderma reesei, Science 265(5171):524-528 (1994).
Dix NJ and Webster J, Fungal Ecology, Chapman & Hall, Cambridge, Great Britain, (1995).
Duangmanee T, Padmasiri SI, Simmons JJ, Raskin L and Sung S, Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments, Water Environment Research 79(9):975-983 (2007).
Dunn S, Hydrogen futures: toward a sustainable energy system, International Journal of Hydrogen Energy 27(3):235-264 (2002).
Eiland F, Klamer M, Lind AM, Leth M and Bååth E, Influence of Initial C/N Ratio on Chemical and Microbial Composition during Long Term Composting of Straw, Microbial Ecology 41(3):272-280 (2001).
Ferris MJ, Muyzer G and Ward DM, Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community, Applied and Environmental Microbiology 62(2):340-346 (1996).
Ghose TK, MEASUREMENT OF CELLULASE ACTIVITIES, Pure and Applied Chemistry 59(2):257-268 (1987).
Golueke CG, Principles of composting, In: The Staff of BioCycle Journal of Waste Recycling:14-27 (1991).
Golueke CG, Bacteriology of composting, BioCycle 33:55-57 (1992).
Gong C-S, Ladisch MR and Tsao GT, Cellobiase from Trichoderma viride: Purification, properties, kinetics, and mechanism:959-981 (1977).
Herbert D, Philipps PJ and Strange RE, Carbohydrate analysis, Methods Enzymol 5B:265-277 (1971).
Hoshino YT and Morimoto S, Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis, Soil Science and Plant Nutrition 54(5):701-710 (2008).
Innis M, PCR Protocols: A Guide to Methods and Applications first, Academic Press, Incorporated, 315-322 (1990).
Insam H, de Bertoldi M, L.F. Diaz MdBWB and Stentiford E, Chapter 3 Microbiology of the composting process, Waste Management Series Volume 8:25-48 (2007).
Krishna C, Solid-State Fermentation Systems-An Overview, Critical Reviews in Biotechnology 25(1-2):1-30 (2005).
Kumar R, Singh S and Singh OV, Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives, Journal of Industrial Microbiology & Biotechnology 35(5):377-391 (2008).
Lee HS and Rittmann BE, Evaluation of Metabolism Using Stoichiometry in Fermentative Biohydrogen, Biotechnology and Bioengineering 102(3):749-758 (2009).
Lee Y-H and Fan LT, Kinetic studies of enzymatic hydrolysis of insoluble cellulose: (II). Analysis of extended hydrolysis times:939-966 (1983).
Lee YH and Fan LT, Kinetic study of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates, Journal Name: Biotechnol. Bioeng.; (United States); Journal Volume: 24:11:Medium: X; Size: Pages: 2383-2406 (1982).
Liu W, Marsh T, Cheng H and Forney L, Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA, Appl. Environ. Microbiol. 63(11):4516-4522 (1997).
Lynd LR, Weimer PJ, van Zyl WH and Pretorius IS, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiol. Mol. Biol. Rev. 66(3):506-577 (2002).
Makut MD and Godiya EM, A survey of cellulolytic mesophilic fungi in the soil environment of Keffi Metropolis, Nasarawa State, Nigeria, African Journal of Microbiology Research 4(21):2191-2195.
Mandels M, Andreotti R and Roche C, Measurement of saccharifying cellulase, Biotechnol Bioeng 6:21-33 (1976).
McKinley VL and Vestal JR, PHYSICAL AND CHEMICAL CORRELATES OF MICROBIAL ACTIVITY AND BIOMASS IN COMPOSTING MUNICIPAL SEWAGE-SLUDGE, Applied and Environmental Microbiology 50(6):1395-1403 (1985).
Meher Kotay S and Das D, Biohydrogen as a renewable energy resource--Prospects and potentials, International Journal of Hydrogen Energy 33(1):258-263 (2008).
Miller DN, Bryant JE, Madsen EL and Ghiorse WC, Evaluation and Optimization of DNA Extraction and Purification Procedures for Soil and Sediment Samples, Appl. Environ. Microbiol. 65(11):4715-4724 (1999).
Mitchell DA, Krieger N and Berovic M, Solid-State Fermentation Bioreactors-Fundamentals of Design and Operation, Springer, (2006).
Mitchell DA, Krieger N, Stuart DM and Pandey A, New developments in solid-state fermentation II. Rational approaches to the design, operation and scale-up of bioreactors: (2000).
Murphy JD and McCarthy K, The optimal production of biogas for use as a transport fuel in Ireland, Renewable Energy 30(14):2111-2127 (2005).
Muyzer G and Smalla K, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie van Leeuwenhoek 73(1):127-141 (1998).
Nakasaki K, Sasaki M, Shoda M and Kubota H, Characteristics of Mesophilic Bacteria Isolated during Thermophilic Composting of Sewage Sludge, Appl. Environ. Microbiol. 49(1):42-45 (1985).
Nakase T, Suzuki M, Takashima M, Hamamoto M, Hatano T and Fukui S, A TAXONOMIC STUDY ON CELLULOLYTIC YEASTS AND YEAST-LIKE MICROORGANISMS ISOLATED IN JAPAN .1. ASCOMYCETOUS YEAST GENERA CANDIDA AND WILLIOPSIS, AND A YEAST-LIKE GENUS PROTOTHECA, Journal of General and Applied Microbiology 40(6):519-531 (1994).
Nelson DL and Cox MM, Lehninger Principles of Biochemistry, fourth, W. H. Freeman and Company, New York, (2005).
O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S and Birkeland N-K, Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor, Enzyme and Microbial Technology 41(5):583-590 (2007).
Oostra J, le Comte EP, van den Heuvel JC, Tramper J and Rinzema A, Intra-particle oxygen diffusion limitation in solid-state fermentation, Biotechnology and Bioengineering 75:13-24 (2001).
Oros-Sichler M, Gomes NCM, Neuber G and Smalla K, A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities, Journal of Microbiological Methods 65(1):63-75 (2006).
Owen WF, Stuckey DC, Healy Jr JB, Young LY and McCarty PL, Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Research 13(6):485-492 (1979).
Plaza GA, Upchurch R, Brigmon RL, Whitman WB and Ulfig K, Rapid DNA extraction for screening soil filamentous fungi using PCR amplification, Polish Journal of Environmental Studies 13(3):315-318 (2004).
Raimbault M, General and microbiological aspects of solid substrate fermentation Electronic Journal of Biotechnology 1(3): (1998).
Reith JH, Wijffels RH and Barten H, Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production, Dutch Biological Hydrogen Foundation, Hague (2003).
Rittmann BE and McCarty PL, Environmental Biotechnology: Principles and Applications, international edition 2001, McGraw-Hill, New York, (2001).
Smit E, Leeflang P, Glandorf B, van Elsas JD and Wernars K, Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis, Applied and Environmental Microbiology 65(6):2614-2621 (1999).
Strom PF, Identification of thermophilic bacteria in solid-waste composting, Appl. Environ. Microbiol. 50(4):906-913 (1985).
Strom PF, Effect of temperature on bacterial species diversity in thermophilic solid-waste composting, Appl. Environ. Microbiol. 50(4):899-905 (1985a).
Strom PF, Identification of thermophilic bacteria in solid-waste composting, Appl. Environ. Microbiol. 50(4):906-913 (1985b).
Thambirajah JJ and Kuthubutheen AJ, Composting of palm press fibre, Biological Wastes 27(4):257-269 (1989).
Thambirajah JJ, Zulkali MD and Hashim MA, Microbiological and biochemical changes during the composting of oil palm empty-fruit-bunches. Effect of nitrogen supplementation on the substrate, Bioresource Technology 52(2):133-144 (1995).
Tsao G, Brainard A, Bungay H, Cao N, Cen P, Chen Z, Du J, Foody B, Gong C, Hall P, Ho N, Irwin D, Iyer P, Jeffries T, Ladisch C, Ladisch M, Lee Y, Mosier N, Mühlemann H, Sedlak M, Shi N, Tolan J, Torget R, Wilson D, Xia L, Mosier N, Hall P, Ladisch C and Ladisch M, Reaction Kinetics, Molecular Action, and Mechanisms of Cellulolytic Proteins, Recent Progress in Bioconversion of Lignocellulosics 65:23-40 (1999).
Tuomela M, Vikman M, Hatakka A and It銥aara M, Biodegradation of lignin in a compost environment: a review, Bioresource Technology 72(2):169-183 (2000).
Updegraf.Dm, SEMIMICRO DETERMINATION OF CELLULOSE IN BIOLOGICAL MATERIALS, Analytical Biochemistry 32(3):420-& (1969).
Vainio EJ and Hantula J, Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA, Mycological Research 104(8):927-936 (2000).
von Klopotek A, Über das Vorkommen und Verhalten von Schimmelpilzen bei der Kompostierung Städtischer Abfallstoffe, Antonie van Leeuwenhoek 28(1):141-160 (1962).
WAKSMAN SA, CORDON TC and HULPOI N, Influence of Temperature Upon the Microbiological Population and Decomposition Processes in Composts of Stable Manure, Soil Science 47(2):83-114 (1939b).
WAKSMAN SA, UMBREIT WW and CORDON TC, Thermophilic Actinomycetes and Fungi in Soils and in Composts, Soil Science 47(1):37-62 (1939a).
Xiros C, Katapodis P and Christakopoulos P, Evaluation of Fusarium oxysporum cellulolytic system for an efficient hydrolysis of hydrothermally treated wheat straw, Bioresource Technology 100(21):5362-5365 (2009).
Xu Q, Singh A and Himmel ME, Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose, Current Opinion in Biotechnology 20(3):364-371 (2009).
Zwietering MH, Jongenburger I, Rombouts FM and VAN 'T Riet K, Modeling of the Bacterial Growth Curve, Appl. Environ. Microbiol. 56(6):1875-1881 (1990).
成游貴, 狼尾草多元化利用育種, 中華農學會報 第四卷(第二期): (2003)。
成游貴, 狼尾草育種與多元化利用, 科學發展 407:24-29 (2006)。
李澤坤,蔬菜廚餘厭氧氫醱酵程序及流體化床醱酵改良設計之研究,國立成功大學碩士論文(2008)。
林建勝,以生質能源程序探討廚餘厭氧氫醱酵之研究,成功大學環境工程學系碩士論文(2007)。
郭世强,廚餘厭氧醱酵產氫程序之功能評估,成功大學環境工程學系碩士論文(2006)。
陳怡傑,以厭氧流體化床進行廚餘過篩及狼尾草之氫醱酵程序研究,成功大學環境工程學系碩士論文(2009)。
楊易霖,有機廢棄物之厭氧消化-前處理及溫度之影響,屏東科技大學環境工程學系碩士論文(2003)。
鄭凱尹,高溫厭氧消化廚餘之研究,屏東科技大學環境工程學系碩士論文(2001)。