簡易檢索 / 詳目顯示

研究生: 陳鼎煜
Chen, Ding-Yu
論文名稱: 有限元素法應用在CAD/3DP製程小腿義肢承筒與殘肢之介面應力分析
Finite Element Analysis of the Interface Pressures between Stump and Transtibial Socket Manufactured by CAD/3DP Process
指導教授: 許來興
Hsu, Lai-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 66
中文關鍵詞: 小腿義肢承筒有限元素分析介面壓力實驗
外文關鍵詞: Transtibial socket, Finite element analysis, Interface pressure measurement
相關次數: 點閱:214下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小腿義肢承筒多數還是依靠義肢師以傳統手工方法製作,傳統手工法主要是由專業的義肢師利用石膏陽模之修模來做出適合不同患者的義肢承筒,而修模技術繁複且需要義肢師長期累積的經驗,導致傳統手工承筒製程的品質不易控制。CAD/3DP製程小腿義肢利用逆向工程之方法將承筒資料數位化以解決修模困難與再現性的問題。但CAD/3DP製程在設計上仍有可加強的地方,即在製作出承筒前如何客觀地評估承筒模型是否適合患者所穿戴,本研究目的是藉由殘肢與承筒間的介面應力之分析與實驗案例,以評估CAD/3DP (Computer Aided-Design/3 Dimensional Printing)製程小腿義肢承筒是否適合患者穿戴。
    本研究藉由介面應力的有限元素分析方法,探討截肢患者穿戴CAD/3DP製程小腿義肢承筒於行走時,殘肢的介面應力狀況。利用步態實驗搭配測力板量測取得膝關節於單腳站立期的作用力以及作用力矩資料,將之匯入至有限元素分析(Finite Element Analysis)的邊界條件,求得介面應力,再將有限元素分析的結果與介面壓力實驗量測的結果作比較,以評估分析的準確性。
    在介面壓力實驗與有限元素分析的結果顯示,髕骨韌帶、脛骨末端以及腓骨末端於單腳站立期之第一壓力峰值與第二壓力峰值,總差異平均高於實驗值的12.2%。將實驗與分析的壓力變化結果比較,發現於單腳站立期下,髕骨韌帶、脛骨末端以及腓骨末端的壓力變化都是相近的,本研究之有限元素分析模型及參數之設定條件,應可用來評估CAD/3DP製程設計之小腿義肢承筒形狀,是否適合患者之需求,即穿戴該承筒不致疼痛而且可以正常行走。

    Most transtibial sockets are made by prosthetist with traditional manual process. However, the process includes lots of complicated modification skills which directly affect the quality of transtibial sockets. Moreover, a certificated prosthetist also need plenty of experience and cases. To solve these problems, our laboratory has developed a CAD/3DP transtibial socket model manufacturing process, which uses the philosophy of reverse engineering.
    The research developed a finite element (FE) model to predict the interface pressures between transtibial stump and the CAD/3DP socket during walking. The boundary conditions of the knee joint were measured using Motion Analysis System and a force plate in the gait laboratory. Ultimately, the FE-predicted results were compared with interface pressures of experimental measurement.
    The FE-predicted results showed that the average pressure of peak 1 and peak 2 at patellar tendon, tibia end and fibular end sites was 12.2% higher than that measured from Tekscan System. In addition, the pressures patterns of FE-predicted results and measurement results were similar at patellar tendon, tibia end and fibular end sites.

    摘要 i Extended Abstract ii 誌謝 vii 目錄 viii 表目錄 xi 圖目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 小腿殘肢 2 1.2.2 小腿義肢 3 1.2.3 傳統手工小腿義肢承筒製程 5 1.2.4 殘肢與承筒間的介面應力之有限元素分析文獻探討 8 1.3 研究動機與目的 12 1.4 論文架構 13 第二章 理論基礎 14 2.1 有限元素法分析 14 2.1.1 線彈性有限元素法 15 2.1.2 非線性有限元素法 15 2.2 步態分析 16 2.3 運動力學分析 25 第三章 殘肢與承筒間之介面應力有限元素分析 27 3.1 介面應力之有限元素分析簡介 27 3.2 介面應力分析步驟 29 3.2.1 幾何模型之建立 29 3.2.2 有限元素模型之組合 31 3.2.3 材料性質設定 32 3.2.4 接觸條件設定 33 3.2.5 網格化設定 33 3.3 邊界條件及分析步驟 35 第四章 實驗設計 37 4.1 CAD/3DP製程小腿義肢承筒製作 37 4.2 實驗設備與方法 39 4.2.1 步態分析實驗設備及校正 39 4.2.2 介面壓力量測設備 43 4.2.3 實驗步驟 45 4.2.4 實驗數據處理方法 51 第五章 案例研究 52 5.1 實驗結果 52 5.1.1 測力板反作用力及膝關節作用力資料 52 5.1.2 壓力量測資料 54 5.1.3 有限元素分析結果 55 5.2 實驗與有限元素分析結果比較 56 第六章 結論與未來研究建議 61 6.1 研究成果與討論 61 6.2 未來研究建議 62 參考文獻 63

    [ANSY 13]ANSYS, “ANSYS Wokbench 15,” 2013. [Online]. Available: www.ansys.com
    [Bowk 92]Bowker, J. H. and Michael, J. W., Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles, 2nd Ed., Mosby-Year Book, 1992.
    [Cail 83]Cailliet R., Knee pain and disability: FA Davis Company, 1983.
    [Geom 14]Geomagic, “Geomagic Studio,” 2014. [Online]. Available: https://www.geomagic.com/en.
    [IDF 14]International Diabetes Federation, “Diabete in Taiwan-2013,” 2014. [Online]. Available: http://www.idf.org/membership/wp/Taiwan.
    [Jia 03]Jia, X., Zhang, M., Lee, W. C. C., “Load transfer mechanics between trans-tibial prosthetic socket and residual limb-dynamic effects,” Medical Engineering & Physics ,Vol. 25, No. 37, pp. 1371-1377, 2003.
    [Kuhn 66]Kuhn, G. G., “Kondylen bettung munster am unter-schenkel Stump, KBM-prothese,” Vol. 14, Nancy france: Atlas d`appareillage prothetique et orthopidique. 1966.
    [Lee 14]Lee, Huei-Huang, Finite element simulations with ANSYS Workbench 15: SDC Publications, August 7, 2014
    [Loga 97]Logan, J. D. and Logan, D. L., First course in the finite element method using algor: PWS Publishing Co., 1997.
    [Lutt 97]Luttgens, K. and Hamilton, N., Kinesiology : Scientific basis of human motion, 9th ed. Madison, WI: Brown & Benchmark Publishers, 1997.
    [MACK 04]MACKENZIE, B., “Range of movement (ROM),” 2004. [Online]. Available: http://www.brianmac.co.uk/musrom.htm.
    [Mate 15]Materialise, “Mimics,” 2015. [Online]. Available: https://www.biomedical.materialise.com/mimics.
    [Nort 09]Northcoast Footcare, “Motions of the foot and ankle,” 2009. [Online]. Available: http://www.northcoastfootcare.com/pages/Biomechanics.html
    [Orth 09]OrthoTrak 5.0 gait analysis software, Motion Analysis Corporation 3617 Westwind Boulevard. Santa Rosa, CA, USA95403, 2009.
    [Perr 92]Perry, J., Gait analysis: Normal and pathological function, NJ: Slack Incorporated, 1992.
    [Radc 61]Radcliffe, C. W. and Foort, J., The patellar-tendon-bearing below-knee prosthesis, Biomechanics Laboratory, Department of Engineerng, University of California, 1961.
    [Reyn 92]Reynolds, D. P., Lord, M., “Interface load analysis for computer-aided design of below-knee prosthetic sockets.”
    Medical and Biological Engineering and Computing, Vol. 30, pp. 419-426, 1992.
    [Robi 97]Robinson, J. L., Smidt, G. L. and Arora, J. S., “Accelerographic, temporal and distance gait factors in below-knee amputees,” Physical Therapy.Vol.57, pp. 898-904, 1977.
    [Romp 14]Range of Motion Project, “Levels of amputation,” 2014. [Online]. Available: http://rompglobal.org/prosthetics101.html. 2014.
    [Sand 93]Sanders, J. E. and Daly, C. H., “Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: comparison of finite element results with experimental measurements,” Journal of Rehabilitation Research & Development, Vol. 30, No. 2, pp. 191-204, 1993.
    [Sand 05]Sanders, J., Zachariah, S., Jacobsen, A., and Fergason, J., "Changes in interface pressures and shear stresses over time on trans-tibial amputee subjects ambulating with prosthetic limbs: comparison of diurnal and six-month differences," Journal of biomechanics, vol. 38, pp. 1566-1573, 2005.
    [Soli 14]SolidWorks Corporation, “SolidWorks,” 2014. [Online]. Available: https://www.solidworks.com.
    [Staa 87]Staats, T. B. and Lundt, J., “The UCLA total surface bearing suction below-knee prosthesis,” Clinical Prosthetics and Orthotics, 11, pp. 118-130, 1987.
    [Stee 87]Steege, J. W. and Schnur, D. S., “Prediction of pressure at the below-knee socket interface by finite element analysis,” ASME Symposium on the Biomechanics of Normal and Pathological Gait, Boston, Vol. l4, pp. 39-43, 1987.
    [Suth 80]Sutherland, D. H., Olshen, R. A., Cooper, L.and Woo, S. L. Y., “The development of mature walking,” J Bone and Joint Surgery, Vol.62-A, No.3, pp. 336-353, 1980.
    [Teks 14]“Tekscan pressure sensors,”2014. [Online]. Available: http://www.tekscan.com.
    [Zhan 95]Zhang, M., Lord, M., A. Turner-Smith, and V. Roberts, “Development of a non-linear finite element modelling of the below-knee prosthetic socket interface,” Medical engineering & physics, vol. 17, pp. 559-566, 1995.
    [Zhan 96]Zhang, M., Turner-Smith, A. R., Roberts, V. C. and Tanner, A., “Friction action at lower limb/prosthetic socket interface,” Medical Engineering & Physics, Vol.18, No.3, pp.207-214, 1996.
    [Zhan 97]Zhang, M., Zheng Y. P. and Mak, A. F. T., “Estimating the effective Young’s modulus of soft tissues from indentation tests-nonlinear finite element analysis of effects of friction and large deformation,” Medical Engineering & Physics, Vol.19, No.6, pp.512-517, 1997.
    [Zhan 98]Zhang, M., Mak, A. F. T. and Roberts, V. C., “Finite element modeling of a residual lower-limb in a prosthetic socket: A survey of the development in the first decade,” Medical Engineering & Physics, Vol. 20, No. 5, pp. 360-373, 1998.
    [Zhan 00]Zhang, M. and Roberts, C., "Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket," Medical engineering & physics, vol. 22, pp. 607-612, 2000.
    [加 78]加倉井周一,義肢製作,東京: 東京都補裝具研究所,1978。
    [平 14]平冠勛,使用CAD軟體之API建立小腿義肢承筒模型設計系統,國立成功大學機械工程學系,碩士論文,2014。
    [林 05]林罡生,膝下殘肢與義肢承筒在不同行走速度下之介面應力分析,國立成功大學機械工程系,碩士論文,2005。
    [洪 07]洪大祐,加入預壓條件之有限元素模型模擬膝下殘肢與義肢承筒間之介面壓力分佈,國立成功大學機械工程系,碩士論文,2007。
    [陳 01]陳新郁、林政仁譯,Saeed M.原著,Finite Element Analysis-Theory and Application with ANSYS. 有限元素分析-理論與應用ANSYS,高立圖書有限公司,台北市,2001。
    [彭 08]彭勛昆,膝下樹脂強化快速原型承筒與殘肢的介面應力分析及步態分析,國立成功大學機械工程學系,碩士論文,2008。
    [葉 14]葉少彬,可編修小腿義肢承筒模型形狀之介面系統,國立成功大學機械工程學系,碩士論文,2014。
    [劉 11]劉棻、劉雪娥,截肢病患支持團體的發展與設計,高雄護理雜誌,第二十八卷,第三期,31-41,2011。
    [衛 15]衛生福利部統計處,衛生福利部統計月報-身心障礙人數-障礙、縣市及年齡別,2015. [Online]. Available: http://www.mohw.gov.tw/cht/DOS/DisplayStatisticFile.aspx?d=31923&s=1.
    [蕭 06]蕭世祥,擬靜態有限元素模型分析膝下殘肢與義肢承筒之介面壓力,國立成功大學機械工程系,碩士論文,2006。

    下載圖示 校內:2017-07-09公開
    校外:2017-07-09公開
    QR CODE