| 研究生: |
張耀屏 Chang, Yao-ping |
|---|---|
| 論文名稱: |
地球潮汐對於TWVD2001一等一級水準測量的影響 Tidal Effects on Leveling of First Order, Class I, TWVD2001 |
| 指導教授: |
尤瑞哲
You, Rey-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 水準測量 、固體潮改正 、海潮負載改正 |
| 外文關鍵詞: | leveling, corrections of oceanic tide loading, solid earth's tidal correction |
| 相關次數: | 點閱:115 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區於民國89年到91年間,以電子精密水準儀施測一等一級水準網共計1010個一等一級水準點,同時在水準點上進行GPS衛星定位測量和重力測量以實施正高改正。另外,也對水準觀測量實施了視準軸誤差改正、折射誤差改正、地球曲率改正、水準尺溫度改正及其它系統誤差改正,進而建立台灣新的高程基準TWVD2001(Taiwan Vertical Datum 2001)。但是一等水準網並沒有進行潮汐改正。
本研究的目的是在水準測量的觀測量上加上潮汐改正,分析潮汐對於水準平差成果的影響。本文使用王文利先生所發展的海潮負載改正模型,而固體潮改正則是應用可變形地球的位理論所推導的潮汐位模式。太陽與月球的位置是由DE200星曆求得。將潮汐改正加在內政部經系統誤差改正後的一等一級水準觀測量上,進行水準網平差。本文研究成果顯示:一等一級水準網中,單一測段的固體潮改正值介於-0.185mm~0.247mm之間,單一測段的海潮負載改正值介於-0.185mm~
0.097mm之間,單一測段的固體潮加上海潮負載改正值介於-0.185mm~
0.225mm。後驗每公里單位權標準偏差為正負0.73mm根號K公里 ,雖然精度並沒有明顯的改善,但水準點高程的變化卻非常顯著。平差後各一等一級水準點高程值的差異量,在北部地區,大都在3mm以下,越往南部地區,則隨著緯度減小而變大,最大有將近9mm的差距。本研究結果顯示,一等水準網進行潮汐改正有其必要。
In period 2000-2002, a new leveling height system of first order, class I, with 1010 benchmarks in Taiwan was measured by precise electric leveling instruments. The Global Positioning System (GPS) measurements and terrestrial gravity measurements were carried out for the orthometric corrections
. In addition, collimation error, refraction error, earth’s curvature, rod temperature and other systematic errors were also corrected in the Taiwan Vertical Datum, TWVD2001. But the influences of earth’s tides were not reduced.
The purpose of this study is to discuss the effects of the earth’s tides, namely solid tides and ocean tides, on the leveling measurements. The oceanic loading model developed by Mr. Wang’s tilt factors derived by global ocean tide model CSR4.0 and the China offshore data are adopted for the reductions, and the deformable earth’s model are used for solid earth’s tidal correction. The positions of Sun and Moon are obtained from DE200 ephemeris. After corrected the leveling data, the leveling network of first order, class I are re-adjusted. The results show that the corrections of the solid earth’s tides range from -0.185 mm to 0.247 mm, while the corrections of oceanic tide loading range from -0.185 mm to 0.097 mm. In total, the tidal effects on the leveling measurements range from -0.185 mm to 0.225 mm in the leveling network of first order, class I. The sigma-naught is not improved and is estimated to be plus or minus 0.73mm. However the change of the adjusted heights is significant and most of the height variations are under 3mm in the northern of Taiwan, and the maximum value is about 9mm in the southern of Taiwan. The effects of the earth’s tides are so significant that the corrections are necessary.
內政部(2001a)。一等水準測量作業規範,內政部,台北。
內政部(2001b)。一等一級水準網測量工作-工作總報告書,中興測量,台中。
王文利、陳士銀和董鴻聞(2000)。“現行水準測量日月引力改正數學模式的分析與使用”。測繪通報,第12期:8-9。
王文利和董鴻聞(2003)。“用CSR4.0+CS模式計算海潮負荷改正”。大地測量與地球動力學。第23期第4期:70-74。
李彥弘和劉啟清(1988)。”精密水準測量鐵墊滑動誤差之探討”: 第七屆測量學術及應用研討會論文集,G201-G211頁。
吳慶鵬(1997)。重力學與固體潮。地震出版社,北京。
周江存(2000)。利用最近海潮模型研究地球物理場中的負荷效應問題。中國科學院測量與地球物理研究所碩士論文,武漢。
胡明城和魯福(1993)。現代大地測量學上冊。測繪出版社,北京
陳南松(2003)。地球固體潮與海潮負載對台灣地區衛星追蹤站坐標與 重力之影響。國立交通大學土木工程學系碩士論文,新竹。
陳國華(2004)。整合TWVD2001水準及GPS資料改進台灣區域性大地水準面模式應用於GPS高程測量。國立成功大學測量工程研究所博士論 文,台南。
許厚澤、陳振幫和楊懷冰(1982)。“海洋潮汐對重力潮汐觀測的影響”。地球物理學報。
董鴻聞和王文利(2000)。“潮汐效應對高精度水準測量的影響”。測繪標準化,第19卷第57期:14-18。
董鴻聞、陳士銀、許大欣、李國智(2000)。“高精度水準測量的海潮負荷改正”。測繪通報,第7期:14-16。
管澤霖(1985)。“地球潮汐對垂線偏離和水準測量的影響”。武漢測繪學院學報,第1期:56-61。
魏子卿(2004)。“水準高差的日月潮汐改正”。測繪科學,第29卷,第2期:6-10。
薄志鵬和藺贊(1986)。“精密水準測量的潮汐改正”。測繪學報,第15卷第3期:229-235。
蘇哲民(2003) TWVD2001。一等水準觀測資料之系統誤差分析。國立成功大學測量工程研究所碩士論文,台南。
Eanes, R. and Bettadpur, S. (1995). CSR3.0 README file. ftp://ftp.csr.utexas.edu/pub/tide/
Eanes, R. (1999). CSR4.0 README file. ftp://ftp.csr.utexas.edu/pub/tide/
Egbert, G. D., Bennett, A. F., and Foreman, M.G.G.(1994). TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99(C12):24,821-24,852,.
Fang, G, et al. (1999).“Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand.”Continental Shelf Research,19:845-869.
Farrell, W. D.(1972). “Deformation of the Earth by Surface Loads.” Review of Geophysics and Space Physics,10(3):761-779.
Goad, C.C. (1979).“The computation of tidal loading effects with integrated Green’s functions.”
Jensen, H. (1950).“Formulas for the astronomical correction to the precise leveling.”Journal of Geodesy,24(3): 267-277.
Le Provost C., Lyard F., Genco M.L., Molines J.M.(1997). Global ocean tides through assimilation of oceanographic and altimeter satellite data in a hydrodynamic model.
http://wwwaviso.cnes.fr:8090/HTML/information/
publication/news/news6/leprovost_uk.html
Longman, I.M.(1962). “A Green function for determining the deformation of the Earth under surface mass load,1. Theory.” Journal of Geophysical Research,67(2):845-850.
Melchior, P. (1978). The tide of the planet earth.Pergamon Press, Oxford.
Rapp, R.H. and Balasubramania, N. (1992). A conceptual formulation of a World Height System, Department of Geodetic Science and Surveying. Report No.421, The Ohio State University, Columbus.
Rappleye, H.S. (1984). Manual of Leveling Computation and Adjustment. Supersedes Coast and Geodetic Survey Special Publication No. 240, NOS/NOAA, Rockville, Maryland.
Ray, R. D. (1999). A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2. NASA Technical Memorandum 209478.
Schwiderski, E. W. (1980). “ Ocean Tides I, Global ocean tidal equations.’’ Marine Geodesy,3:161~217.
Torge, W.(1991). Geodesy. Walter de Gruyter & Co.,Berlin, 29-33.
Vaníček, P.(1978). Tidal corrections to geodetic quantities. National Geodetic Survey, National Ocean Survey, NOAA Rockvilla,Md.20852
Vaníček, P. and Krakiwsky, E.J.(1986). Geodesy : the concept. P587-606 Elsevier Science Publishers B.V.,Amsterdam.