| 研究生: |
周宛靜 Chou, Wan-Ching |
|---|---|
| 論文名稱: |
製備富含功能性氫氧基之粗糙鈦表面評估其生物親和性之研究 Evaluation biocompatibility of abundant functional OH groups on the rough titanium surface in vitro and in vivo |
| 指導教授: |
王清正
Wang, Rex C.C. 李澤民 Lee, Tzer-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 吹砂後酸蝕 、直流電漿 、射頻電漿 、兩性氫氧基 、親水性 、骨與植體接觸面積 、扭力測試值 、骨破裂模式 |
| 外文關鍵詞: | sandblasted and acid-etched (SLA), Direct-Current (DC) plasma treatment, Radio-Frequency (RF) plasma treatment, amphoteric OH, hydrophilicity, bone-to-implant contact (BIC), removal torque value (RTV), failure mode |
| 相關次數: | 點閱:174 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生醫材料除了材料本身種類的選擇以外,材料表面之特性,例如電荷、成分、粗糙度和親水性功能都會影響到植體骨內固定,這些因素彼此具有交互作用的影響。目前最常被用於臨床植體的材料為純鈦及鈦合金,許多研究指出粗糙的鈦表面可以增加成骨母細胞的生物親和性,因此本研究使用純鈦金屬進行兩階段表面處理後評估其生物親和性。鈦植體最常使用的表面處理方式是在表面進行吹砂然後進行酸蝕(sandblasted, large-grit and acid etched, SLA)。SLA的製程可以在鈦植體表面製造出粗糙形貌以期達到鈦植體的機械固定特性及植體植入後長期穩定性。然而經過SLA處理的粗糙表面卻具有疏水的特性,但親水性表面對於細胞親和性卻有更好的貼附效果。因此在本研究中,純鈦經過表面處理後不僅保持了粗糙的形貌,而且還產生了親水性的表面特性。
本研究使用兩種電漿處理方法,直流電漿(Direct current, DC)和射頻(Radio frequency, RF)電漿來改善SLA處理過的疏水特性。兩種電漿處理建構了不同的功率範圍和不同含量的功能性氫氧基團。目前為止沒有文獻對於鹼性鈦-氫氧基團與細胞反應,骨結合強度或骨與植入物接觸面積之間的關係進行探討。因此本研究的目的是評估在粗糙表面製備含有豐富的兩性(Amphoteric)之功能性氫氧基團在活體外和動物實驗中的影響。
在經過SLA製程的鈦表面上產生功能性氫氧基。使用各種檢驗方式探討試片表面的形貌、粗糙度、親疏水性和化學成分。透過Enzyme-linked immunosorbent assay (ELISA)的吸光值測試評估經過1小時後,試片表面蛋白質吸附的含量。將MG63細胞在試片上培養3小時和24小時,使用掃描式電子顯微鏡觀察細胞形態。細胞培養1小時和24小時,以免疫螢光染色檢測細胞骨架。細胞培養1、7、14天後使用ELISA吸光值評估細胞增生和分化的表現。將24根鈦植體植入四隻紐西蘭大白兔的近側脛骨中,植入後4週和8週後,以扭力測試值(Removal torque values, RTV)和組織切片之新生骨與植體介面接觸面積(Bone-to-implant contact, BIC)的組織形態學分析進行討論。
實驗結果顯示,電漿處理不會改變微米級的表面形貌,並且電漿處理後的試片表面具有超親水的特性。DC和RF電漿處理組之間的親水性沒有顯著差異。藉由X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS)分析表面組成,結果顯示RF電漿處理組之功能性氫氧基含量高於控制組和DC電漿處理組別。由於兩種電漿處理過後之試片表面兩性的氫氧基團豐富,將能促進蛋白質吸附和細胞貼附;RF電漿處理後的組別細胞形態呈現多觸手的形態,肌動蛋白(Actin)和黏著斑蛋白(Vinculin)表現量較高;與控制組相比,電漿處理也能促進細胞增生和分化能力,增生能力測試結果顯示RF-100的組別為控制組的1.5倍,分化能力測試結果顯示DC處理的組別及RF-50W均為控制組的兩倍,RF-100和RF-200為控制組的三倍。因此,結果顯示細胞的生物反應與兩性氫氧基團的總含量相關。RF-200W的扭力測試值RTV和骨與植體接觸面積BIC比例明顯高於其他組別,並具有統計上的差異(p < 0.05)。這表示較高的RTV和BIC值顯示RF電漿處理後的骨結合強度能有更好鍵結力。鹼性氫氧基團與RTV和BIC之間的關係也顯示出線性對應關係。骨破裂模式(Failure mode)可以提供植體與骨頭之間的鍵結界面之穩固特性評估。在骨破裂模式中,由於骨頭經過扭力測試後破裂的位置,我們提出了一個骨組織生長遵循三個方向機制的假說,並且RF電漿處理可以在4週和8週時促進骨癒合。
The surface properties such as charges, compositions, roughness, and hydrophilicity functional, play an important role in bone fixation and these factors are closely related to each other. Many studies reported that rough titanium surface could enhance the cell behavior of osteoblasts. In this study, commercial pure titanium is used for the following experiments. Nowadays the popular method to construct rough surface for clinical use is sandblasted, large-grit and acid etched (SLA). SLA method can fabricate a rough topography for mechanical fixation and long-term stability of titanium implant. However the rough SLA-treated surface exhibited hydrophobic property and cell affinity is favorable hydrophilic surface. In this study, the prepared titanium surface not only keeps rough topography but also produces a hydrophilic surface. This study used two kinds of plasma treatments including direct current and radio-frequency plasma to optimize the SLA-treated surface. The modification of plasma treatments creates respective power range and different content functional OH groups. There is no report in discussing the relationships between basic Ti-OH groups and cell responses, bone bonding strength or bone-to-implant contact. The aim of this study was to evaluate the effect of the amphoteric functional OH groups on the rough surface both in vitro and in vivo.
Functional hydroxyl groups were produced on a SLA-treated surface. The surface topography, roughness, wettability, and chemical composition were examined using various techniques. Protein adsorption was evaluated for 1h by ELISA. MG63 cells were cultured on specimens for 3h and 24h to observe cell morphology by SEM; cell cultured for 1h and 24h to examine the cytoskeleton by immunofluorescence image; cell cultured for 1, 7,14 days to evaluate cell proliferation and differentiation by ELISA. Twenty-four implants were inserted into the proximal tibia of four New Zealand white rabbits. The RTV and BIC of biological responses were measured in terms of histomorphometric analysis 4 and 8 weeks post-implantation.
The results show that the plasma treatments do not change the micron scale topography and plasma-treated specimens presented super hydrophilicity. There was no significant difference of wettability between DC and RF plasma treated groups. The surface composition were examined by XPS and the result showed that the functional OH content on the RF plasma-treated group was higher than the control and DC treatment groups. Because of the abundant amphoteric OH groups, the protein adsorption and cell attachment were promoted after plasma treatments; cell morphology in RF-plasma treated groups had more polygonal type and higher expression of actin and vinculin; cell proliferation and differentiation were also enhanced on plasma-treated groups compared to control. The cell responses have correlated to the total content of amphoteric OH groups. The RTV and BIC ratios of RF-200W were significantly higher than other groups (p< 0.05). It indicated higher RTV and BIC ratios represented better bone bonding strength after RF plasma treatment. The relationships between basic OH groups and RTV and BIC showed linear correspondence. The failure mode could provide the information about the interface fixation between implant and bone. The results of this study demonstrate that failure mode could provide the better understanding the bone-to-implant fixation. We proposed a hypothesis that the bone tissue growth is following the three-direction mechanism and RF-plasma treatment can help to enhance bone healing at 4 and 8 weeks.
[1] B.D. Ratner, S.J. Bryant, Biomaterials: Where we have been and where we are going, Annu Rev Biomed Eng 6 (2004) 41-75.
[2] H. Alexander, J.B. Brunski, S.L. Cooper, L.L. Hench, R.W. Hergenrother, A.S. Hoffman, J. Kohn, R. Langer, N.A. Peppas, B.D. Ratner, S.W. Shalaby, S.A. Visser, I.V. Yannas, CHAPTER 2 - Classes of Materials Used in Medicine, in: B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Eds.), Biomaterials Science, Academic Press, San Diego, 1996, pp. 37-130.
[3] Y. Okazaki, E. Gotoh, M. Nishimori, S. Katsuda, T. Manabe, K. Kobayashi, Osteocompatibility of stainless steel, Co-Cr-Mo, Ti-6Al-4V and Ti-15Zr-4Nb-4Ta alloy implants in rat bone tissue, Mater Trans 46(7) (2005) 1610-1617.
[4] M. Saini, Y. Singh, P. Arora, V. Arora, K. Jain, Implant biomaterials: A comprehensive review, World J Clin Cases 3(1) (2015) 52-57.
[5] S.K. Bhullar, N.L. Lala, S. Ramkrishna, Smart Biomaterials - a Review, Rev Adv Mater Sci 40(3) (2015) 303-314.
[6] S. Lechner, R. Huss, Bone engineering: Combining smart biomaterials and the application of stem cells, Artif Organs 30(10) (2006) 770-774.
[7] M.E. Furth, A. Atala, M.E. Van Dyke, Smart biomaterials design for tissue engineering and regenerative medicine, Biomaterials 28(34) (2007) 5068-5073.
[8] A.J.T. Teo, A. Mishra, I. Park, Y.J. Kim, W.T. Park, Y.J. Yoon, Polymeric Biomaterials for Medical Implants and Devices, Acs Biomater Sci Eng 2(4) (2016) 454-472.
[9] Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, M. Glogauer, Biodegradable Materials for Bone Repair and Tissue Engineering Applications, Materials 8(9) (2015) 5744-5794.
[10] I.S. Kikuchi, R.S.C. Galante, K. Dua, V.R. Malipeddi, R. Awasthi, D.D. Ghisleni, T.D.A. Pinto, Hydrogel Based Drug Delivery Systems: A Review with Special Emphasis on Challenges Associated with Decontamination of Hydrogels and Biomaterials, Curr Drug Deliv 14(7) (2017) 917-925.
[11] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Prog Polym Sci 32(8-9) (2007) 762-798.
[12] W.S.W. Harun, R.I.M. Asri, J. Alias, F.H. Zulkifli, K. Kadirgama, S.A.C. Ghani, J.H.M. Shariffuddin, A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials, Ceram Int 44(2) (2018) 1250-1268.
[13] E. Salamanca, C.C. Hsu, H.M. Huang, N.C. Teng, C.T. Lin, Y.H. Pan, W.J. Chang, Bone regeneration using a porcine bone substitute collagen composite in vitro and in vivo, Sci Rep-Uk 8 (2018).
[14] H. Schliephake, T. Kage, Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material, Journal of Biomedical Materials Research 56(1) (2001) 128-136.
[15] G.H. Brieger, Dentistry - an Illustrated History - Ring,Me, New York Times Bk R (Dec) (1985) 20-20.
[16] R.A. Glenner, Dentistry in the Year 2000 - a Historical-Perspective, J Am Dent Assoc 108(4) (1984) 585-585.
[17] J.E. Lemons, Dental Implant Biomaterials, J Am Dent Assoc 121(6) (1990) 716-719.
[18] N. Sykaras, A.M. Iacopino, V.A. Marker, R.G. Triplett, R.D. Woody, Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review, Int J Oral Max Impl 15(5) (2000) 675-690.
[19] P.I. Branemark, Osseointegration and Its Experimental Background, J Prosthet Dent 50(3) (1983) 399-410.
[20] L. Carlsson, T. Rostlund, B. Albrektsson, T. Albrektsson, P.I. Branemark, Osseointegration of Titanium Implants, Acta Orthop Scand 57(4) (1986) 285-289.
[21] D.M. Brunette, Titanium in medicine 1ed., Springer-Verlag Berlin Heidelberg, Berlin, Germany, 2001.
[22] A. Ballo, O. Omar, W. Xia, A. Palmquist, Dental Implant Surfaces Implant Dentistry - A Rapidly Evolving Practic : Physicochemical Properties, Biological Performance, and Trends, in: T. Ilser (Ed.), Implant Dentistry : A Rapidly Evolving Practice, INTECH2011.
[23] J.A. Porter, J.A. von Fraunhofer, Success or failure of dental implants? A literature review with treatment considerations, Gen Dent 53(6) (2005) 423-32; quiz 433, 446.
[24] Z. Schwartz, B.D. Boyan, Underlying mechanisms at the bone-biomaterial interface, 56(3) (1994) 340-347.
[25] Z.Y. Yuan, B.L. Su, Titanium oxide nanotubes, nanofibers and nanowires, Colloid Surface A 241(1-3) (2004) 173-183.
[26] J.L. Ong, D.L. Carnes, K. Bessho, Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo, Biomaterials 25(19) (2004) 4601-4606.
[27] A.W. Tan, B. Pingguan-Murphy, R. Ahmad, S.A. Akbar, Review of titania nanotubes: Fabrication and cellular response, Ceram Int 38(6) (2012) 4421-4435.
[28] P. Mandracci, F. Mussano, P. Rivolo, S. Carossa, Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology, Coatings 6(1) (2016).
[29] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Prog Mater Sci 54(3) (2009) 397-425.
[30] G.L. Yang, F.M. He, X.F. Yang, X.X. Wang, S.F. Zhao, Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model, Oral Surg Oral Med O 106(4) (2008) 516-524.
[31] H. Kim, S.H. Choi, J.J. Ryu, S.Y. Koh, J.H. Park, I.S. Lee, The biocompatibility of SLA-treated titanium implants, Biomedical Materials 3(2) (2008).
[32] J.W. Park, I.S. Jang, J.Y. Suh, Bone response to endosseous titanium implants surface-modified by blasting and chemical treatment: A histomorphometric study in the rabbit femur, J Biomed Mater Res B 84b(2) (2008) 400-407.
[33] C.Y. Guo, J.P. Matinlinna, J.K.-H. Tsoi, A.T. Hong Tang, Residual Contaminations of Silicon-Based Glass, Alumina and Aluminum Grits on a Titanium Surface After Sandblasting, Silicon (2015).
[34] F. Rupp, L. Scheideler, N. Olshanska, M. de Wild, M. Wieland, J. Geis-Gerstorfer, Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces, Journal of Biomedical Materials Research Part A 76a(2) (2006) 323-334.
[35] D. Buser, R.K. Schenk, S. Steinemann, J.P. Fiorellini, C.H. Fox, H. Stich, Influence of Surface Characteristics on Bone Integration of Titanium Implants - a Histomorphometric Study in Miniature Pigs, Journal of Biomedical Materials Research 25(7) (1991) 889-902.
[36] M.M. Shalabi, A. Gortemaker, M.A. Van't Hof, J.A. Jansen, N.H.J. Creugers, Implant surface roughness and bone healing: a systematic review, Journal of Dental Research 85(6) (2006) 496-500.
[37] D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom, D. Buser, Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible, Journal of Biomedical Materials Research 40(1) (1998) 1-11.
[38] R.L. Sammons, N. Lumbikanonda, M. Gross, P. Cantzler, Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration, Clin Oral Implan Res 16(6) (2005) 657-666.
[39] P. Quinlan, B. Dent, P. Nummikoski, R. Schenk, D. Cagna, J. Mellonig, F. Higginbottom, K. Lang, D. Buser, D. Cochran, Immediate and early loading of SLA ITI single-tooth implants: An in vivo study, Int J Oral Max Impl 20(3) (2005) 360-370.
[40] M.M. Bornstein, A. Lussi, B. Schmid, U.C. Belser, D. Buser, Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 3-year results of a prospective study in partially edentulous patients, Int J Oral Max Impl 18(5) (2003) 659-666.
[41] S.N. Jia, Y. Zhang, T. Ma, H.F. Chen, Y. Lin, Enhanced Hydrophilicity and Protein Adsorption of Titanium Surface by Sodium Bicarbonate Solution, Journal of Nanomaterials (2015).
[42] X.X. Hu, H. Shen, K.G. Shuai, E.W. Zhang, Y.J. Bai, Y. Cheng, X.L. Xiong, S.G. Wang, J. Fang, S.C. Wei, Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies, Appl Surf Sci 257(6) (2011) 1813-1823.
[43] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D. Boyan, High surface energy enhances cell response to titanium substrate microstructure, Journal of Biomedical Materials Research Part A 74a(1) (2005) 49-58.
[44] M.M. Bornstein, P. Valderrama, A.A. Jones, T.G. Wilson, R. Seibl, D.L. Cochran, Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles, Clin Oral Implan Res 19(3) (2008) 233-241.
[45] K.A. Schlegel, C. Prechtl, T. Most, C. Seidl, R. Lutz, C. Wilmowsky, Osseointegration of SLActive implants in diabetic pigs, Clin Oral Implan Res 24(2) (2013) 128-134.
[46] R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage, B.D. Boyan, The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation, Biomaterials 32(13) (2011) 3395-3403.
[47] G. Zhao, A.L. Raines, M. Wieland, Z. Schwartz, B.D. Boyan, Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography, Biomaterials 28(18) (2007) 2821-2829.
[48] P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang, Plasma-surface modification of biomaterials, Mat Sci Eng R 36(5-6) (2002) 143-206.
[49] A. Bogaerts, R. Gijbels, Fundamental aspects and applications of glow discharge spectrometric techniques, Spectrochim Acta B 53(1) (1998) 1-42.
[50] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochim Acta B 61(1) (2006) 2-30.
[51] B. Eliasson, U. Kogelschatz, Nonequilibrium Volume Plasma Chemical-Processing, Ieee T Plasma Sci 19(6) (1991) 1063-1077.
[52] R. Guo, A.G. Talma, R.N. Datta, W.K. Dierkes, J.W.M. Noordermeer, Novel Surface Modification of Sulfur by Plasma Polymerization and its Application in Dissimilar Rubber-Rubber Blends, Plasma Chem Plasma P 30(5) (2010) 679-695.
[53] G.S. Selwyn, H.W. Herrmann, J. Park, I. Henins, Materials processing using an atmospheric pressure, RF-generated plasma source, Contrib Plasm Phys 41(6) (2001) 610-619.
[54] A.I. Al-Shamma's, S.R. Wylie, J. Lucas, C.F. Pau, Design and construction of a 2.45 GHz waveguide-based microwave plasma jet at atmospheric pressure for material processing, J Phys D Appl Phys 34(18) (2001) 2734-2741.
[55] T.M. Lee, E. Chang, C.Y. Yang, Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy, Biomaterials 25(1) (2004) 23-32.
[56] T.M. Lee, Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution, J Mater Sci-Mater M 17(1) (2006) 15-27.
[57] C.C. Wang, Y. Chsu, M.C. Hsieh, S.P. Yang, F.C. Su, T.M. Lee, Effects of nano-surface properties on initial osteoblast adhesion and Ca/P adsorption ability for titanium alloys, Nanotechnology 19(33) (2008).
[58] C.C. Wang, Y.C. Hsu, F.C. Su, S.C. Lu, T.M. Lee, Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher, Journal of Biomedical Materials Research Part A 88a(2) (2009) 370-383.
[59] K. Yuan, Y.J. Chan, K.C. Kung, T.M. Lee, Comparison of Osseointegration on Various Implant Surfaces After Bacterial Contamination and Cleaning: A Rabbit Study, Int J Oral Max Impl 29(1) (2014) 32-40.
[60] R.D. Lillie, P. Pizzolato, L.L. Vacca, Salt Zenker, a Stable, Nonhemolytic, Formaldehyde-Free Fixative - Addition of Salt to Other Acetic-Acid Fixatives, Am J Clin Pathol 59(3) (1973) 374-375.
[61] Y. Tanaka, H. Saito, Y. Tsutsumi, H. Doi, H. Imai, T. Hanawa, Active hydroxyl groups on surface oxide film of titanium, 316L stainless steel, and cobalt-chromium-molybdenum alloy and its effect on the immobilization of poly(ethylene glycol), Mater Trans 49(4) (2008) 805-811.
[62] K.L. Nelson, M.D. Cox, G.T. Richter, J.L. Dornhoffer, A Comparative Review of Osseointegration Failure Between Osseointegrated Bone Conduction Device Models in Pediatric Patients, Otol Neurotol 37(3) (2016) 276-280.
[63] A.J. Smith, P. Dieppe, K. Vernon, M. Porter, A.W. Blom, N.J.R.E. Wales, Failure rates of stemmed metal-on-metal hip replacements: analysis of data from the National Joint Registry of England and Wales, Lancet 379(9822) (2012) 1199-1204.
[64] M.L. Arlin, Survival and success of sandblasted, large-grit, acid-etched and titanium plasma-sprayed implants: A retrospective study, J Can Dent Assoc 73(9) (2007) 821-+.
[65] W.Z. Chen, X.K. Shen, Y. Hu, K. Xu, Q.C. Ran, Y.L. Yu, L.L. Dai, Z. Yuan, L. Huang, T.T. Shen, K.Y. Cai, Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis, Biomaterials 114 (2017) 82-96.
[66] D. Buser, N. Broggini, M. Wieland, R.K. Schenk, A.J. Denzer, D.L. Cochran, B. Hoffmann, A. Lussi, S.G. Steinemann, Enhanced bone apposition to a chemically modified SLA titanium surface, J Dent Res 83(7) (2004) 529-33.
[67] D. Buser, N. Broggini, M. Wieland, R.K. Schenk, A.J. Denzer, D.L. Cochran, B. Hoffmann, A. Lussi, S.G. Steinemann, Enhanced bone apposition to a chemically modified SLA titanium surface, Journal of Dental Research 83(7) (2004) 529-533.
[68] A.B. Novaes, Jr., S.L. de Souza, R.R. de Barros, K.K. Pereira, G. Iezzi, A. Piattelli, Influence of implant surfaces on osseointegration, Braz Dent J 21(6) (2010) 471-81.
[69] U. Cvelbar, S. Pejovnik, M. Mozetie, A. Zalar, Increased surface roughness by oxygen plasma treatment of graphite/polymer composite, Appl Surf Sci 210(3-4) (2003) 255-261.
[70] Y.C. Wu, T.M. Lee, J.C. Lin, S.Y. Shaw, C.Y. Yang, Argon-Plasma-Treated Chitosan: Surface Characterization and Initial Attachment of Osteoblasts, J Biomat Sci-Polym E 21(5) (2010) 563-579.
[71] A.U. Alam, M.M.R. Howlader, M.J. Deen, The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass, J Micromech Microeng 24(3) (2014).
[72] L. Zhang, X.S. He, G. Chen, T. Wang, Y.J. Tang, Z.B. He, Effects of rf power on chemical composition and surface roughness of glow discharge polymer films, Appl Surf Sci 366 (2016) 499-505.
[73] T. Hanawa, A comprehensive review of techniques for biofunctionalization of titanium, J Periodontal Implant Sci 41(6) (2011) 263-72.
[74] M.A. Lopez-Heredia, G. Legeay, C. Gaillard, P. Layrolle, Radio frequency plasma treatments on titanium for enhancement of bioactivity, Acta Biomaterialia 4(6) (2008) 1953-1962.
[75] T. Youngblood, J.L. Ong, Effect of plasma-glow discharge as a sterilization of titanium surfaces, Implant Dent 12(1) (2003) 54-60.
[76] B. Feng, J. Weng, B.C. Yang, S.X. Qu, X.D. Zhang, Characterization of surface oxide films on titanium and adhesion of osteoblast, Biomaterials 24(25) (2003) 4663-4670.
[77] J.S.P. da Silva, S.C. Amico, A.O.N. Rodrigues, C.A.G. Barboza, C. Alves, A.T. Croci, Osteoblastlike Cell Adhesion on Titanium Surfaces Modified by Plasma Nitriding, Int J Oral Max Impl 26(2) (2011) 237-244.
[78] J. Yang, J.Z. Bei, S.G. Wang, Enhanced cell affinity of poly (D,L-lactide) by combining plasma treatment with collagen anchorage, Biomaterials 23(12) (2002) 2607-2614.
[79] W.L. Wade, R.J. Mammone, M. Binder, Surface-Properties of Commercial Polymer-Films Following Various Gas Plasma Treatments, J Appl Polym Sci 43(9) (1991) 1589-1591.
[80] S.H. Hsu, W.C. Chen, Improved cell adhesion by plasma-induced grafting of L-lactide onto polyurethane surface, Biomaterials 21(4) (2000) 359-367.
[81] Y.Q. Wang, X. Qu, J. Lu, C.F. Zhu, L.J. Wan, J.L. Yang, J.Z. Bei, S.G. Wang, Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment, Biomaterials 25(19) (2004) 4777-4783.
[82] H. Shen, X.X. Hu, J.Z. Bei, S.G. Wang, The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide), Biomaterials 29(15) (2008) 2388-2399.
[83] W.Y. Tseng, S.H. Hsu, C.H. Huang, Y.C. Tu, S.C. Tseng, H.L. Chen, M.H. Chen, W.F. Su, L.D. Lin, Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium - Surface Characteristics and Biological Effects, Plos One 8(12) (2013).
[84] N. Recek, M. Jaganjac, M. Kolar, L. Milkovic, M. Mozetic, K. Stana-Kleinschek, A. Vesel, Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates, Molecules 18(10) (2013) 12441-12463.
[85] E.Y. Wu, K.L. Ou, S.F. Ou, K.D. Jandt, Y.N. Pan, Effect of O-2-Plasma Treatment on Surface Characteristics and Osteoblast-Like MG-63 Cells Response of Ti-30Nb-1Fe-1Hf Alloy, Mater Trans 50(4) (2009) 891-898.
[86] H.Y. Wang, D.T.K. Kwok, W. Wang, Z.W. Wu, L.P. Tong, Y.M. Zhang, P.K. Chu, Osteoblast behavior on polytetrafluoroethylene modified by long pulse, high frequency oxygen plasma immersion ion implantation, Biomaterials 31(3) (2010) 413-419.
[87] E.J. Lee, J.S. Kwon, S.H. Uhm, D.H. Song, Y.H. Kim, E.H. Choi, K.N. Kim, The effects of non-thermal atmospheric pressure plasma jet on cellular activity at SLA-treated titanium surfaces, Curr Appl Phys 13 (2013) S36-S41.
[88] B.E. Rapuano, K. Hackshaw, D.E. Macdonald, Heat or radiofrequency plasma glow discharge treatment of a titanium alloy stimulates osteoblast gene expression in the MC3T3 osteoprogenitor cell line, J Periodontal Implant Sci 42(3) (2012) 95-104.
[89] R. Olivares-Navarrete, S.L. Hyzy, D.L. Hutton, C.P. Erdman, M. Wieland, B.D. Boyan, Z. Schwartz, Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage, Biomaterials 31(10) (2010) 2728-2735.
[90] M.O. Klein, A. Bijelic, T. Ziebart, F. Koch, P.W. Kammerer, M. Wieland, M.A. Konerding, B. Al-Nawas, Submicron Scale-Structured Hydrophilic Titanium Surfaces Promote Early Osteogenic Gene Response for Cell Adhesion and Cell Differentiation, Clin Implant Dent R 15(2) (2013) 166-175.
[91] M. Salido, J.I. Vilches, J.L. Gutierrez, J. Vilches, Actin cytoskeletal organization in human osteoblasts grown on different dental titanium implant surfaces, Histol Histopathol 22(12) (2007) 1355-1364.
[92] C.Y. Wu, M.J. Chen, T. Zheng, X.N. Yang, Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy, Bio-Med Mater Eng 26 (2015) S155-S164.
[93] F. Luthen, R. Lange, P. Becker, J. Rychly, U. Beck, J.G. Nebe, The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells, Biomaterials 26(15) (2005) 2423-40.
[94] B. Nebe, B. Finke, F. Luthen, C. Bergemann, K. Schroder, J. Rychly, K. Liefeith, A. Ohl, Improved initial osteoblast functions on amino-functionalized titanium surfaces, Biomol Eng 24(5) (2007) 447-54.
[95] W.-C. Chou, R. Wang, C. Liu, C.-Y. Yang, T.-M. Lee, Surface Modification of Direct-Current and Radio-Frequency Oxygen Plasma Treatments Enhance Cell Biocompatibility, Materials 10(11) (2017) 1223.
[96] G. Vidal, T. Blanchi, A.J. Mieszawska, R. Calabrese, C. Rossi, P. Vigneron, J.L. Duval, D.L. Kaplan, C. Egles, Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides, Acta Biomater 9(1) (2013) 4935-43.
[97] Y.T. Liu, T.M. Lee, T.S. Lui, Enhanced osteoblastic cell response on zirconia by bio-inspired surface modification, Colloids Surf B Biointerfaces 106 (2013) 37-45.
[98] B. Baharloo, M. Textor, D.M. Brunette, Substratum roughness alters the growth, area, and focal adhesions of epithelial cells, and their proximity to titanium surfaces, Journal of Biomedical Materials Research Part A 74a(1) (2005) 12-22.
[99] S.M. Romereim, N.H. Conoan, B.J. Chen, A.T. Dudley, A dynamic cell adhesion surface regulates tissue architecture in growth plate cartilage, Development 141(10) (2014) 2085-2095.
[100] E. D'Arcangelo, A.P. McGuigan, Micropatterning strategies to engineer controlled cell and tissue architecture in vitro, Biotechniques 58(1) (2015) 13-23.
[101] Y.F. Zhu, X.Y. Zheng, G.Q. Zeng, Y. Xu, X.H. Qu, M. Zhu, E.Y. Lu, Clinical efficacy of early loading versus conventional loading of dental implants, Sci Rep-Uk 5 (2015).
[102] K. Duske, I. Koban, E. Kindel, K. Schroder, B. Nebe, B. Holtfreter, L. Jablonowski, K.D. Weltmann, T. Kocher, Atmospheric plasma enhances wettability and cell spreading on dental implant metals, J Clin Periodontol 39(4) (2012) 400-407.
[103] J.W. Park, T.G. Kwon, J.Y. Suh, The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur, Clin Oral Implan Res 24(6) (2013) 706-709.
[104] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D. Boyan, High surface energy enhances cell response to titanium substrate microstructure, J Biomed Mater Res A 74(1) (2005) 49-58.
[105] F.P. Guastaldi, D. Yoo, C. Marin, R. Jimbo, N. Tovar, D. Zanetta-Barbosa, P.G. Coelho, Plasma treatment maintains surface energy of the implant surface and enhances osseointegration, Int J Biomater 2013 (2013) 354125.
[106] L. Canullo, T. Genova, M. Tallarico, G. Gautier, F. Mussano, D. Botticelli, Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study, J Dent Res 95(5) (2016) 566-73.
[107] L. Wang, T.J. Ye, L.F. Deng, J. Shao, J. Qi, Q. Zhou, L. Wei, S.J. Qiu, Repair of Microdamage in Osteonal Cortical Bone Adjacent to Bone Screw, Plos One 9(2) (2014).
[108] T.M. Lee, B.C. Wang, Y.C. Yang, E. Chang, C.Y. Yang, Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: in vivo study, J Biomed Mater Res 55(3) (2001) 360-7.
[109] T.M. Lee, C.Y. Yang, E. Chang, R.S. Tsai, Comparison of plasma-sprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study, J Biomed Mater Res A 71(4) (2004) 652-60.
[110] C.Y. Yang, T.M. Lee, C.W. Yang, L.R. Chen, M.C. Wu, T.S. Lui, In vitro and in vivo biological responses of plasma-sprayed hydroxyapatite coatings with posthydrothermal treatment, Journal of Biomedical Materials Research Part A 83a(2) (2007) 263-271.
[111] S.J. Ferguson, N. Broggini, M. Wieland, M. de Wild, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, D. Buser, Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface, Journal of Biomedical Materials Research Part A 78a(2) (2006) 291-297.
校內:2023-08-31公開