| 研究生: |
郭宜盈 Kuo, Yi-Ying |
|---|---|
| 論文名稱: |
解析情感型與代謝型疾病的交互作用:三磷酸腺苷敏感型鉀離子通道在棕色脂肪組織和中腦邊緣系統多巴胺迴路互動之角色 Characterization of mood disorders comorbid with metabolism syndromes: brown adipose tissue communicates to the mesolimbic dopaminergic circuits through KATP channels |
| 指導教授: |
陳珮君
Chen, Pei-Chun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 三磷酸線苷敏感型鉀離子通道(KATP通道) 、棕色脂肪 、纖維細胞生長因子21 (FGF21) 、格列苯脲 、高脂飲食誘導類憂鬱 |
| 外文關鍵詞: | KATP channel, Brown adipose tissue , FGF21 , HFD-induced depression, Glibenclamide |
| ORCID: | 0000-0002-6876-8126 |
| ResearchGate: | Yi-Ying Kuo |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肥胖及憂鬱症的盛行率在全球各國逐年增加, 近年來流行病學研究指出肥胖與憂鬱 症兩者有著高度關聯, 先前研究發現肥胖病人的棕色脂肪活性較低暗示著肥胖會影 響棕色脂肪功能, 棕色脂肪為一重要調控代謝之器官且能透過交感神經及分泌內分 泌因子與大腦溝通,三磷酸腺苷敏感型鉀離子通道 (KATP) 的開關受細胞膜內三磷酸 腺苷及二磷酸腺苷的比值所調控,進而影響細胞的代謝及興奮性,重要的是,先前有 一研究發現脂肪細胞缺少Kir6.2會增加脂肪葡萄糖攝取,暗示著三磷酸腺苷敏感型鉀離 子通道在脂肪細胞的功能。故此研究我們的假設為: 在棕色脂肪上的三磷酸腺苷敏感 型鉀離子通道在憂鬱症中扮演重要角色, 其機制可能是透過內分泌因子的釋放或交 感神經系統來調控憂鬱症狀。 從我們的研究發現, 高脂飲食除了使小鼠產生肥胖及 代謝症狀外,更可誘發類憂鬱症。 在棕色脂肪移除後小鼠也會出現類憂鬱行為,顯示 棕色脂肪參與在憂鬱症的發病過程中。我們確認了三磷酸腺苷鉀離子通道表現在棕色 脂肪上,在棕色脂肪給予三磷酸腺苷敏感型鉀離子通道抑制劑-格列苯脲後不僅改善 代謝失調更減少憂鬱症狀,且增加了棕色脂肪上的三磷酸腺苷鉀離子通道表現量。接 著我們發現棕色脂肪上的三磷酸腺苷鉀離子通道表現量的增加伴隨著交感神經活性上 升。受活化的β3 腎上腺素受體(β3-adrenergicreceptors)及其下游蛋白激酶A(protein kinase A)可以更增加三磷酸腺苷敏感型鉀離子通道的表現。針對內分泌因子方面, 我們發現格列苯脲給予使棕色脂肪細胞中的纖維細胞生長因子21 (FGF21) 表現量上 升,給予FGF21同樣可以改善代謝失調及減少憂鬱症狀,此外我們發現給予FGF21或 格列苯脲都可以恢復在腹側被蓋區多巴胺神經元上的FGF21受體(FGFR1, KLB)因 高脂飼料餵食而出現的失衡,並且增加多巴胺神經元的活性。 總合來說,我們認為活 化棕色脂肪上的三磷酸腺苷敏感型鉀離子通道, 能改善由高脂飲食所導致的憂鬱行為 這是透過調控交感神經系統及內分泌因子的釋放。
The prevalence rate of obesity and depression is increasing around the world, and epidemiological studies have shown that the two conditions often exist as comorbidities. Previous studies have also revealed that brown adipose tissue (BAT) activity is decreased in obese patients, which implies that obesity might affect BAT function. Importantly, BAT is a critical metabolism-regulating organ that can communicate with the brain through sympathetic nerves and BATokines. In addition, ATP-sensitive potassium (KATP) channels are known to couple the metabolic state of a cell to membrane excitability, as the channels are gated by the intracellular concentration of ATP and ADP. One particularly interesting recent study revealed that loss of the KATP channel subunit Kir6.2 in adipocytes increases glucose uptake, suggesting a functional role for the channel in adipose tissue. We therefore hypothesized that KATP channels in BAT may play an important role in depression, acting through the sympathetic nerve circuitry or BATokine release. To test this hypothesis, we used mice fed a high-fat diet (HFD), which developed both depression-like symptoms and metabolic syndrome. Since depressive symptoms could also be observed after the removal of BAT in control mice, our findings suggested a role for BAT in mood disorders. Next, we confirmed that KATP channels are functionally expressed in BAT, and we showed that infusion of the KATP channel blocker glibenclamide (GB) into BAT of HFD mice not only improved metabolic disorders but also reduced depression-like symptoms. GB infusion also restored HFD-induced decreases in BAT KATP channel expression. We further found that upregulation of KATP channels was correlated with increased sympathetic nerve innervation, and activation of β3-adrenergic receptor (β3 AR)-mediated protein kinase A (PKA) signaling stimulated forward trafficking of KATP channels. Regarding BATokine release, we found that GB treatment increased FGF21 levels in brown adipocytes both in vitro and in vivo. Then, we demonstrated that FGF21 treatment reduced metabolic disorder symptoms and improved depression-like behaviors in HFD-fed mice. Either FGF21 or GB treatment could reverse the dysregulation of FGF21 receptors caused by HFD feeding, as well as the dysregulated expression of FGFR1 and a co-receptor β-klotho (KLB), in the ventral tegmental area. Finally, we found that FGF21 or GB treatment increased dopaminergic neuron activity. Together, these findings suggest that activation of KATP channels in BAT can reverse HFD-induced depression-like symptoms through sympathetic innervation and BATokine release.
Bamshad M, Song CK, Bartness TJ (1999) CNS origins of the sympathetic nervous system outflow to brown adipose tissue. American Journal of Physiology- Regulatory Integrative and Comparative Physiology 276:1569-1578.
Bargut TC, Aguila MB, Mandarim-de-Lacerda CA (2016) Brown adipose tissue: Updates in cellular and molecular biology. Tissue Cell 48:452-460.
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200-205.
Bartness TJ, Vaughan CH, Song CK (2010) Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 34 Suppl 1:S36-42.
BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga SO, Acevedo MR, Walsh SA, Ornitz DM, Potthoff MJ (2017) FGF21 regulates metabolism through adipose dependent and -independent mechanisms. Cell Metab 25:935-944.
Boshoff EL, Fletcher EJR, Duty S (2018) Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner. Neuropharmacology 137:156-163.
Bowden C, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW (1997) Reduced dopamine turnover in the basal ganglia of depressed suicides. Brain Res 769:135-140.
Branca RT, He T, Zhang L, Floyd CS, Freeman M, White C, Burant A (2014) Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci U S A 111:18001-18006.
Carey M, Small H, Yoong SL, Boyes A, Bisquera A, Sanson-Fisher R (2014) Prevalence of comorbid depression and obesity in general practice: a cross- sectional survey. British Journal of General Practice 64:E122-E127.
Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG (2011) Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 17:736-740.
Chen PC, Lao CL, Chen JC (2007) Dual alteration of limbic dopamine D1 receptor- mediated signalling and the Akt/GSK3 pathway in dopamine D3 receptor mutants during the development of methamphetamine sensitization. Journal of neurochemistry 100:225-241.
Chen PC, Kryukova YN, Shyng SL (2013) Leptin regulates KATP channel trafficking in pancreatic beta-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J Biol Chem 288:34098-34109.
Chen PC, Ruan JS, Wu SN (2018) Evidence of decreased activity in intermediate- conductance calcium-activated potassium channels during retinoic acid- induced differentiation in motor neuron-like NSC-34 Cells. Cell Physiol Biochem 48:2374-2388.
Chen PS, Yang YK, Yeh TL, Lee IH, Yao WJ, Chiu NT, Lu RB (2008) Correlation between body mass index and striatal dopamine transporter availability in healthy volunteers--a SPECT study. Neuroimage 40:275-279.
Chen S, Chen ST, Sun Y, Xu Z, Wang Y, Yao SY, Yao WB, Gao XD (2019) Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer's disease. Redox Biol 22:101133.
Chen Y, Zeng X, Huang X, Serag S, Woolf CJ, Spiegelman BM (2017) Crosstalk between KCNK3-Mediated Ion Current and Adrenergic Signaling Regulates Adipose Thermogenesis and Obesity. Cell 171:836-848 e813.
Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, Lidell ME, Saraf MK, Labbe SM, Hurren NM, Yfanti C, Chao T, Andersen CR, Cesani F, Hawkins H, Sidossis LS (2014) Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63:4089-4099.
Cornu M, Oppliger W, Albert V, Robitaille AM, Trapani F, Quagliata L, Fuhrer T, Sauer U, Terracciano L, Hall MN (2014) Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proc Natl Acad Sci U S A 111:11592-11599.
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018-6027.
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509- 1517.
Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, Kliewer SA (2012) Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148:556-567.
Egecioglu E, Anesten F, Schele E, Palsdottir V (2018) Interleukin-6 is important for regulation of core body temperature during long-term cold exposure in mice. Biomedical Reports 9:206-212.
Fang X, Ma J, Mu D, Li B, Lian B, Sun C (2020) FGF21 Protects Dopaminergic Neurons in Parkinson's Disease Models Via Repression of Neuroinflammation. Neurotox Res 37:616-627.
Fernandes MA, Santos MS, Moreno AJ, Duburs G, Oliveira CR, Vicente JA (2004) Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability. J Biochem Mol Toxicol 18:162-169.
Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos- Flier E (2010) Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59:2781-2789.
Flippo KH, Jensen-Cody SO, Claflin KE, Potthoff MJ (2020) FGF21 signaling in glutamatergic neurons is required for weight loss associated with dietary protein dilution. Sci Rep 10:19521.
Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA (2010) Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24:2050-2064.
Fukuen S, Iwaki M, Yasui A, Makishima M, Matsuda M, Shimomura I (2005) Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity. J Biol Chem 280:23653-23659.
Ge X, Wang Y, Lam KSL, Xu A (2012) Metabolic actions of FGF21: molecular mechanisms and therapeutic implications. Acta Pharmaceutica Sinica B 2:350-357.
Geng L, Liao B, Jin L, Huang Z, Triggle CR, Ding H, Zhang J, Huang Y, Lin Z, Xu A (2019) Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep 26:2738-2752.
Ghanei Gheshlagh R, Parizad N, Sayehmiri K (2016) The relationship between depression and metabolic syndrome: systematic review and meta-analysis study. Iran Red Crescent Med J 18:e26523.
Grunewald ZI, Winn NC, Gastecki ML, Woodford ML, Ball JR, Hansen SA, Sacks HS, Vieira-Potter VJ, Padilla J (2018) Removal of interscapular brown adipose tissue increases aortic stiffness despite normal systemic glucose metabolism in mice. Am J Physiol Regul Integr Comp Physiol 314:R584- R597.
Guilherme A, Pedersen DJ, Henriques F, Bedard AH, Henchey E, Kelly M, Morgan DA, Rahmouni K, Czech MP (2018) Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol Metab 16:116-125.
Gunaydin LA, Kreitzer AC (2016) Cortico-basal ganglia circuit function in psychiatric disease. Annu Rev Physiol 78:327-350.
Heshmati M, Russo SJ (2015) Anhedonia and the brain reward circuitry in depression. Curr Behav Neurosci Rep 2:146-153.
Hoflich A, Michenthaler P, Kasper S, Lanzenberger R (2019) Circuit Mechanisms of Reward, Anhedonia, and Depression. Int J Neuropsychopharmacol 22:105- 118.
Itoh N (2014) FGF21 as a Hepatokine, Adipokine, and Myokine in Metabolism and Diseases. Front Endocrinol (Lausanne) 5:107.
Jensen-Cody SO, Flippo KH, Claflin KE, Yavuz Y, Sapouckey SA, Walters GC, Usachev YM, Atasoy D, Gillum MP, Potthoff MJ (2020) FGF21 signals to glutamatergic neurons in the ventromedial hypothalamus to suppress carbohydrate intake. Cell Metab 32:273-286 e276.
Jiang N, Ban J, Guo Y, Zhang Y (2022) The association of ambient temperature with depression in middle-aged and elderly people: a multicenter prospective repeat survey study in China. Environmental Research Letters 17.
Kao YC, Wei WY, Tsai KJ, Wang LC (2019) High fat diet suppresses peroxisome proliferator-activated receptors and reduces dopaminergic neurons in the substantia nigra. Int J Mol Sci 21.
Kaster MP, Ferreira PK, Santos AR, Rodrigues AL (2005) Effects of potassium channel inhibitors in the forced swimming test: possible involvement of L- arginine-nitric oxide-soluble guanylate cyclase pathway. Behav Brain Res 165:204-209.
Kharitonenkov A, Larsen P (2011) FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol Metab 22:81-86.
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627- 1635.
Kitaichi Y, Inoue T, Nakagawa S, Boku S, Kakuta A, Izumi T, Koyama T (2010) Sertraline increases extracellular levels not only of serotonin, but also of dopamine in the nucleus accumbens and striatum of rats. Eur J Pharmacol 647:90-96.
Kriszt R et al. (2017) Optical visualisation of thermogenesis in stimulated single-cell brown adipocytes. Sci Rep 7:1383.
Kuipers EN, Held NM, In Het Panhuis W, Modder M, Ruppert PMM, Kersten S, Kooijman S, Guigas B, Houtkooper RH, Rensen PCN, Boon MR (2019) A single day of high-fat diet feeding induces lipid accumulation and insulin resistance in brown adipose tissue in mice. Am J Physiol Endocrinol Metab 317:E820-E830.
Kuo YY, Lin JK, Lin YT, Chen JC, Kuo YM, Chen PS, Wu SN, Chen PC (2020) Glibenclamide restores dopaminergic reward circuitry in obese mice through interscauplar brown adipose tissue. Psychoneuroendocrinology 118:104712.
Lahmann C, Kramer HB, Ashcroft FM (2015) Systemic Administration of Glibenclamide Fails to Achieve Therapeutic Levels in the Brain and Cerebrospinal Fluid of Rodents. PLoS One 10:e0134476.
Lan T, Morgan DA, Rahmouni K, Sonoda J, Fu X, Burgess SC, Holland WL, Kliewer SA, Mangelsdorf DJ (2017) FGF19, FGF21, and an FGFR1/beta-Klotho- activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab 26:709-718.
Lehr L, Canola K, Leger B, Giacobino JP (2009) Differentiation and characterization in primary culture of white adipose tissue brown adipocyte-like cells. Int J Obes (Lond) 33:680-686.
Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, Tal I, Dieckmann W, Gupta G, Kolodny GM, Pacak K, Herscovitch P, Cypess AM, Chen KY (2017) Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A 114:8649-8654.
Li H, Wu G, Fang Q, Zhang M, Hui X, Sheng B, Wu L, Bao Y, Li P, Xu A, Jia W (2018)
Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nat Commun 9:272.
Lucero MT, Pappone PA (1989) Voltage-gated potassium channels in brown fat cells. J Gen Physiol 93:451-472.
Luijten IHN, Feldmann HM, von Essen G, Cannon B, Nedergaard J (2019) In the
absence of UCP1-mediated diet-induced thermogenesis, obesity is augmented even in the obesity-resistant 129S mouse strain. Am J Physiol Endocrinol Metab 316:E729-E740.
Martin GM, Chen PC, Devaraneni P, Shyng SL (2013) Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 4:386.
Mason BL, Minhajuddin A, Czysz AH, Jha MK, Gadad BS, Mayes TL, Trivedi MH (2022) Fibroblast growth factor 21 (FGF21) is increased in MDD and interacts with body mass index (BMI) to affect depression trajectory. Transl Psychiatry 12:16.
Miki T, Minami K, Zhang L, Morita M, Gonoi T, Shiuchi T, Minokoshi Y, Renaud JM, Seino S (2002) ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 283:E1178-1184.
Minami S, Satoyoshi H, Ide S, Inoue T, Yoshioka M, Minami M (2017) Suppression of reward-induced dopamine release in the nucleus accumbens in animal models of depression: Differential responses to drug treatment. Neurosci Lett 650:72-76.
Minard AY, Tan SX, Yang P, Fazakerley DJ, Domanova W, Parker BL, Humphrey SJ, Jothi R, Stockli J, James DE (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17:29-36.
Mullins JT, White C (2019) Temperature and mental health: Evidence from the spectrum of mental health outcomes. J Health Econ 68:102240.
Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, Shah P, Feher D, Williams PG, Nerurkar VR (2011) Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation 8:64.
Nisoli E, Tonello C, Carruba MO (1998) Nerve growth factor, β3-adrenoceptor and uncoupling protein 1 expression in rat brown fat during postnatal development. Neuroscience Letters 246:5-8.
Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F (2015) Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol 6:4.
Ramirez-Ponce MP, Mateos JC, Bellido JA (2002) Insulin increases the density of potassium channels in white adipocytes: possible role in adipogenesis. J Endocrinol 174:299-307.
Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E, Millership S, Fenech ME, MacIntyre D, Turner JO, Moore JD, Blackburn E, Gullick WJ, Cinti S, Montana G, Parker MG, Christian M (2014) Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 306:E945-964.
Ruan JS, Lin JK, Kuo YY, Chen YW, Chen PC (2018) Chronic palmitic acid-induced lipotoxicity correlates with defective trafficking of ATP sensitive potassium channels in pancreatic beta cells. J Nutr Biochem 59:37-48.
Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609-625.
Ryu V, Garretson JT, Liu Y, Vaughan CH, Bartness TJ (2015) Brown adipose tissue has sympathetic-sensory feedback circuits. Journal of Neuroscience 35:2181-2190.
Sakaguchi TA, K; Fisler, J, S; Bray,G ,A (1989) Effect of a hgh-fat diet on firing rate of sympathetic nerves innervating brown adipose tissue in anesthetized ratsI. Phystology& Behavior 45:1177-1182.
Satterthwaite TD, Kable JW, Vandekar L, Katchmar N, Bassett DS, Baldassano CF, Ruparel K, Elliott MA, Sheline YI, Gur RC, Gur RE, Davatzikos C, Leibenluft E, Thase ME, Wolf DH (2015) Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology 40:2258-2268.
Shakiba S, Rezaee M, Afshari K, Kazemi K, Sharifi KA, Haddadi NS, Haj-Mirzaian A, Kamalian A, Jazaeri SZ, Richter K, Dehpour AR (2019) Evaluation of the pharmacological involvement of ATP-sensitive potassium (K(ATP)) channels in the antidepressant-like effects of topiramate on mice. Naunyn Schmiedebergs Arch Pharmacol 392:833-842.
Sharma S, Fulton S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. International Journal of Obesity 37:382-389.
Shi H, Moustaid-Moussa N, Wilkison WO, Zemel MB (1999) Role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J 13:1833-1838. So M, Gaidhu MP, Maghdoori B, Ceddia RB (2011) Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats. Lipids Health Dis 10:99.
So WY, Cheng Q, Chen L, Evans-Molina C, Xu A, Lam KS, Leung PS (2013) High glucose represses beta-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor gamma signaling. Diabetes 62:3751-3759.
Sornelli F, Fiore M, Chaldakov GN, Aloe L (2009) Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. General Physiology and Biophysics 28:179-183.
Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, Goodyear LJ (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215-223.
Su WJ, Peng W, Gong H, Liu YZ, Zhang Y, Lian YJ, Cao ZY, Wu R, Liu LL, Wang B, Wang YX, Jiang CL (2017) Antidiabetic drug glyburide modulates depressive- like behavior comorbid with insulin resistance. J Neuroinflammation 14:210.
Ter Horst KW, Lammers NM, Trinko R, Opland DM, Figee M, Ackermans MT, Booij J, van den Munckhof P, Schuurman PR, Fliers E, Denys D, DiLeone RJ, la Fleur SE, Serlie MJ (2018) Striatal dopamine regulates systemic glucose metabolism in humans and mice. Sci Transl Med 10:3752.
Tezze C, Romanello V, Sandri M (2019) FGF21 as Modulator of Metabolism in Health and Disease. Front Physiol 10:419.
Tomiyama Y, Brian JE, Jr., Todd MM (1999) Cerebral blood flow during hemodilution and hypoxia in rats : role of ATP-sensitive potassium channels. Stroke 30:1942-1947; discussion 1947-1948.
Tovar SP, L; Hess, S; Morgan, D, A; Hausen, C; Brönneke, H, S; Hampel, S; Ackermann, P, J; Evers, N; Büning, H; Wunderlich, F,T; Rahmouni, K; Kloppenburg, P; Brüning, J,C (2013) KATP-channel-dependent regulation of catecholaminergic neurons controls BAT sympathetic nerve activity and energy homeostasis. Cell Metab 18:445–455.
Tsai SF, Chen YW, Kuo YM (2018) High-fat diet reduces the hippocampal content level of lactate which is correlated with the expression of glial glutamate transporters. Neurosci Lett 662:142-146.
Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, Kim SY, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537-541.
Usui N, Yoshida M, Takayanagi Y, Nasanbuyan N, Inutsuka A, Kurosu H, Mizukami H, Mori Y, Kuro OM, Onaka T (2021) Roles of fibroblast growth factor 21 in the control of depression-like behaviours after social defeat stress in male rodents. J Neuroendocrinol 33:e13026.
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500-1508.
Villarroya F, Cereijo R, Villarroya J, Giralt M (2017) Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology 13:26-35.
Wang J, Guo X, Li L, Qiu H, Zhang Z, Wang Y, Sun G (2018a) Application of the Fluorescent Dye BODIPY in the Study of Lipid Dynamics of the Rice Blast Fungus Magnaporthe oryzae. Molecules 23.
Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, Zhuang P, Whalen MJ, Song B, Wang XJ, Li X, Lo EH, Xu Y, Wang X (2018b) FGF21 attenuates high-fat diet- induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol 55:4702-4717.
Wang X, Zhu L, Hu J, Guo R, Ye S, Liu F, Wang D, Zhao Y, Hu A, Wang X, Guo K, Lin L (2020) FGF21 Attenuated LPS-Induced Depressive-Like Behavior via Inhibiting the Inflammatory Pathway. Front Pharmacol 11:154.
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Veniant MM (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250-259.
Yang C, Wang W, Deng P, Li C, Zhao L, Gao H (2021) Fibroblast Growth Factor 21 Modulates Microglial Polarization That Attenuates Neurodegeneration in Mice and Cellular Models of Parkinson's Disease. Front Aging Neurosci 13:778527.
Yano K, Yamaguchi K, Seko Y, Okishio S, Ishiba H, Tochiki N, Takahashi A, Kataoka S, Okuda K, Liu Y, Fujii H, Umemura A, Moriguchi M, Okanoue T, Itoh Y (2022) Hepatocyte-specific fibroblast growth factor 21 overexpression ameliorates high-fat diet-induced obesity and liver steatosis in mice. Lab Invest 102:281- 289.
Ye L, Wang X, Cai C, Zeng S, Bai J, Guo K, Fang M, Hu J, Liu H, Zhu L, Liu F, Wang D, Hu Y, Pan S, Li X, Lin L, Lin Z (2019) FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/beta-klotho. Exp Neurol 317:34-50.
Yu Y, Bai F, Liu Y, Yang Y, Yuan Q, Zou D, Qu S, Tian G, Song L, Zhang T, Li S, Liu Y, Wang W, Ren G, Li D (2015) Fibroblast growth factor (FGF21) protects mouse liver against D-galactose-induced oxidative stress and apoptosis via activating Nrf2 and PI3K/Akt pathways. Mol Cell Biochem 403:287-299.