簡易檢索 / 詳目顯示

研究生: 傅聖勛
Fu, Sheng-Hsun
論文名稱: 乙烯二氧噻吩於金(111)電極表面上之自組裝行為及其單分子膜電化學聚合行為的探討
Self-Assembled Behavior of 3,4-ethylenedioxythiophene Monolayer on Au(111) Surface and the Electropolymerization of the Adsorption Monolayer
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: 自組裝單分子膜掃描式電子穿隧顯微鏡電化學聚合
外文關鍵詞: 3,4-Ethylenedioxythiophene, EC-STM, Electropolymerization
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電化學式掃描電子穿隧顯微鏡(Electrochemical Scanning Tunneling Microscopy, EC-STM)與循環伏安儀(Cyclic Voltammetry, CV)來探討3,4-ethylenedioxythiophene(EDOT)分子由磷酸鹽緩衝溶液(phosphate buffer solution, PBS)吸附至Au(111)電極表面的自組裝行為,及其單分子膜在表面上的電化學聚合現象。研究結果發現EDOT單體可以在Au(111)表面進行氧化吸附,形成具有(4×5), (3×2√13), (3×7) 及 (5×√3)等多種結構的單分子膜。其起始吸附電位約為-0.25V (v.s Pt),並在更負的電位(-0.4 V)進行脫附。當施加較低的電位進行吸附時,分子能緩慢地自組裝至表面上,因此形成更規則有序的單分子膜。
    在高分子化的過程中需施加大於0.2 V的電壓才能進行聚合反應。然而,當電極持續施予一恆定的電壓時,除了單分子膜以外溶液中的單體也同樣能參與聚合反應,導致於電極表面聚合而成的高分子膜形成多層結構;相反地,當施加於電極的電壓以循環掃描(-0.25 V – 0.25 V) 的方式進行調控,藉由來回間斷的終止/進行單體聚合來控制反應逐層的進行,因此能獲得從吸附的單分子膜上聚合並且形成高規則度的高分子膜。

    Electrochemical Scanning Tunneling Microscopy (EC-STM) and Cyclic Voltammetry (CV) are utilized to study the adsorption behavior of 3,4-ethylenedioxythiophene (EDOT) from phosphate buffer solution onto Au(111) surface, as well as the electro-polymerization of the EDOT monolayer into poly-ethylenedioxythiophene (PEDOT). The results show that EDOT molecules can oxidative adsorption on gold surface, forming a monolayer with various ordered adlattices of (4×5), (3×2√13), (3×7) and (5×√3), as confirmed by the in-situ observation of STM. The oxidation adsorption is initiated at a potential of -0.25 V (vs Pt reference electrode) and the adsorption monolayer desorbs at a more negative potential (-0.4V). When the adsorption is performed at a lower potential, the monolayer forms slowly and, therefore, a more ordered monolayer can be obtained. To perform the polymerization, a potential higher than 0.2 V should be applied. However, if the electrode is controlled at the constant potential, the EDOT monomers in the solution will take part in the reaction on the electrode, leading to a disordered PEDOT layer with multilayered structure. On the contrary, if a cyclic potential (-0.25 V – 0.25 V) is applied after formation of an ordered EDOT monolayer, the polymerization will perform mainly on the adsorbed molecules and an ordered PEDOT monolayer can be obtained.

    摘要 I Abstract II Extended Abstract III 致謝 X 目錄 XIII 圖目錄 XV 表目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 文獻回顧 4 2-1 自組裝單分子膜(Self-Assembled Monolayer, SAMs) 4 2-1-1 自組裝單分子膜簡介 4 2-1-2 自組裝現象及分子的特性 5 2-1-3 自組裝分子薄膜的應用 6 2-2 有機硫化物於金表面的自組裝行為 8 2-2-1 硫醇及二烷基二硫化物 8 2-2-2 芳香硫醚 9 2-3 有機半導體高分子 14 2-3-1 有機半導體分子起源 14 2-3-2 導電高分子簡介 18 2-3-3 導電高分子材料特性 21 2-3-4 聚3,4-乙烯二氧噻吩(PEDOT) 23 第三章 實驗部分 31 3-1 藥品及相關耗材 31 3-2 儀器設備 32 3-2-1 循環伏安儀(Cyclic Voltammogram, CV) 32 3-2-2 電化學阻抗分析(Electrochemical Impedance Spectra, EIS) 36 3-2-3 掃描式電子穿隧顯微鏡(Scanning Tunneling Microscopy, STM) 38 3-2-3-1 儀器操作原理 38 3-2-3-2 取像方法 40 3-2-3-3 儀器裝置介紹 42 3-3 實驗步驟 47 3-3-1 金屬單金電極的製備 47 3-3-2 STM的前處理 47 3-3-3 循環伏安儀的前處理 50 3-3-4 自組裝單分子膜之製備實驗程序 52 第四章 結果與討論 53 4-1 參考電極之校正 53 4-1-1 金(111)電極在0.01M緩衝溶液下不同參考電極下之循環伏安圖 53 4-2 EDOT單體於金(111)上自組裝行為 55 4-2-1 於OCP吸附情況下單體吸、脫附行為 55 4-2-2 於吸附電位吸附情況下單體吸、脫附行為 60 4-3 運用不同的電化學聚合處理 66 4-3-1 定電位聚合處理法 66 4-3-1-1 固定濃度之定電位聚合處理 66 4-3-1-2 稀釋濃度之定電位聚合處理 70 4-3-2 循環掃描聚合處理法 72 4-3-2-1 以OCP吸附構型之循環掃描聚合 72 4-3-2-2 以吸附電位吸附構型之循環掃描聚合 77 4-4 探討兩種不同聚合處理的差異 80 4-4-1 循環伏安法檢測高分子膜的穩定性及導電性 80 4-4-2 電化學阻抗分析高分子膜的電阻 82 第五章 結論與建議 85 5-1 結論 85 5-2 建議與未來工作 87 第六章 參考文獻 88

    [1] W. Bigelow, D. Pickett, and W. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
    [2] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
    [3] A. Ulman, "Formation and structure of self-assembled monolayers," Chemical reviews, vol. 96, pp. 1533-1554, 1996.
    [4] H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers," Journal of the American Chemical Society, vol. 115, pp. 9389-9401, 1993.
    [5] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chemical reviews, vol. 105, pp. 1103-1170, 2005.
    [6] Y. Xia, X.-M. Zhao, and G. M. Whitesides, "Pattern transfer: Self-assembled monolayers as ultrathin resists," Microelectronic Engineering, vol. 32, pp. 255-268, 1996.
    [7] C. Cotton, A. Glidle, G. Beamson, and J. M. Cooper, "Dynamics of the formation of mixed alkanethiol monolayers: Applications in structuring biointerfacial arrangements," Langmuir, vol. 14, pp. 5139-5146, 1998.
    [8] I. Taniguchi, K. Toyosawa, H. Yamaguchi, and K. Yasukouchi, "Reversible electrochemical reduction and oxidation of cytochrome c at a bis (4-pyridyl) disulphide-modified gold electrode," Journal of the Chemical Society, Chemical Communications, pp. 1032-1033, 1982.
    [9] J. Huang, D. A. Dahlgren, and J. C. Hemminger, "Photopatterning of self-assembled alkanethiolate monolayers on gold-a simple monolayer photoresist utilizing aqueous chemistry," Langmuir, vol. 10, pp. 626-628, 1994.
    [10] X.-M. Li, J. Huskens, and D. N. Reinhoudt, "Reactive self-assembled monolayers on flat and nanoparticle surfaces, and their application in soft and scanning probe lithographic nanofabrication technologies," Journal of Materials Chemistry, vol. 14, pp. 2954-2971, 2004.
    [11] J. Zhang, Q. Chi, and J. Ulstrup, "Assembly dynamics and detailed structure of 1-propanethiol monolayers on Au (111) surfaces observed real time by in situ STM," Langmuir, vol. 22, pp. 6203-6213, 2006.
    [12] Y.-F. Liu and Y.-L. Lee, "Adsorption characteristics of OH-terminated alkanethiol and arenethiol on Au (111) surfaces," Nanoscale, vol. 4, pp. 2093-2100, 2012.
    [13] J. Zhang, A. Bilic̄, J. R. Reimers, N. S. Hush, and J. Ulstrup, "Coexistence of multiple conformations in cysteamine monolayers on Au (111)," The Journal of Physical Chemistry B, vol. 109, pp. 15355-15367, 2005.
    [14] J. Zhang, Q. Chi, J. U. Nielsen, E. P. Friis, J. E. Andersen, and J. Ulstrup, "Two-dimensional cysteine and cystine cluster networks on Au (111) disclosed by voltammetry and in situ scanning tunneling microscopy," Langmuir, vol. 16, pp. 7229-7237, 2000.
    [15] A. Lachkar, A. Selmani, E. Sacher, M. Leclerc, and R. Mokhliss, "Metallization of polythiophenes I. Interaction of vapor-deposited Cu, Ag and Au with poly (3-hexylthiophene)(P3HT)," Synthetic metals, vol. 66, pp. 209-215, 1994.
    [16] F. Elfeninat, C. Fredriksson, E. Sacher, and A. Selmani, "A theoretical investigation of the interactions between thiophene and vanadium, chromium, copper, and gold," The Journal of chemical physics, vol. 102, pp. 6153-6158, 1995.
    [17] M. H. Dishner, J. C. Hemminger, and F. J. Feher, "Formation of a self-assembled monolayer by adsorption of thiophene on Au (111) and its photooxidation," Langmuir, vol. 12, pp. 6176-6178, 1996.
    [18] E. Ito, J. Noh, and M. Hara, "Different adsorption states between thiophene and α-bithiophene thin films prepared by self-assembly method," Japanese journal of applied physics, vol. 42, p. L852, 2003.
    [19] T. Matsuura, M. Nakajima, and Y. Shimoyama, "Growth of self-assembled monolayer of thiophene on gold surface: An infrared spectroscopic study," Japanese journal of applied physics, vol. 40, p. 6945, 2001.
    [20] J. Noh, E. Ito, K. Nakajima, J. Kim, H. Lee, and M. Hara, "High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au (111)," The Journal of Physical Chemistry B, vol. 106, pp. 7139-7141, 2002.
    [21] T. Iida, Y. Sakai, T. Shimomura, T. Nakamura, and K. Ito, "Chemical adsorption of poly (3-alkylthiophene) on Au using self-assembling technique," Japanese Journal of Applied Physics, vol. 46, p. L1126, 2007.
    [22] Y. Jeong, C. Lee, E. Ito, M. Hara, and J. Noh, "Time-dependent phase transition of self-assembled monolayers formed by thioacetyl-terminated tolanes on Au (111)," Japanese journal of applied physics, vol. 45, p. 5906, 2006.
    [23] C. K. Chiang, C. Fincher Jr, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, et al., "Electrical conductivity in doped polyacetylene," Physical Review Letters, vol. 39, p. 1098, 1977.
    [24] Y. Cao, P. Smith, and A. J. Heeger, "Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers," Synthetic Metals, vol. 48, pp. 91-97, 1992.
    [25] R. D. McCullough and R. D. Lowe, "Enhanced electrical conductivity in regioselectively synthesized poly (3-alkylthiophenes)," Journal of the Chemical Society, Chemical Communications, pp. 70-72, 1992.
    [26] K.-Y. Jen, G. Miller, and R. L. Elsenbaumer, "Highly conducting, soluble, and environmentally-stable poly (3-alkylthiophenes)," Journal of the Chemical Society, Chemical Communications, pp. 1346-1347, 1986.
    [27] J. Roncali, R. Garreau, D. Delabouglise, F. Garnier, and M. Lemaire, "A molecular approach of poly (thiophene) functionalization," Synthetic Metals, vol. 28, pp. 341-348, 1989.
    [28] D. L. Wise, Electrical and Optical Polymer Systems: Fundamentals: Methods, and Applications: CRC Press, 1998.
    [29] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x," Journal of the Chemical Society, Chemical Communications, pp. 578-580, 1977.
    [30] S. Lefrant, L. Lichtmann, H. Temkin, D. Fitchen, D. Miller, G. Whitwell, et al., "Raman scattering in (CH) x and (CH) x treated with bromine and iodine," Solid State Communications, vol. 29, pp. 191-196, 1979.
    [31] R. De Surville, M. Jozefowicz, L. Yu, J. Pepichon, and R. Buvet, "Electrochemical chains using protolytic organic semiconductors," Electrochimica Acta, vol. 13, pp. 1451-1458, 1968.
    [32] A. Diaz and J. Logan, "Electroactive polyaniline films," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 111, pp. 111-114, 1980.
    [33] M. Lapkowski and E. Genies, "Evidence of two kinds of spin in polyaniline from in situ EPR and electrochemistry: Influence of the electrolyte composition," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 279, pp. 157-168, 1990.
    [34] H. Yoon, B. S. Jung, and H. Lee, "Correlation between electrical conductivity, thermal conductivity, and ESR intensity of polyaniline," Synthetic Metals, vol. 41, pp. 699-702, 1991.
    [35] A. Bhattacharya, A. De, and S. Bhattacharyya, "Preparation of polypyrrole composite with acrylic acid-grafted tetrafluorothylene-hexafluoropropylene (Teflon-FEP) copolymer," Synthetic metals, vol. 65, pp. 35-38, 1994.
    [36] F. Garnier, G. Tourillon, M. Gazard, and J. Dubois, "Organic conducting polymers derived from substituted thiophenes as electrochromic material," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 148, pp. 299-303, 1983.
    [37] S. Hotta, M. Soga, and N. Sonoda, "Novel organosynthetic routes to polythiophene and its derivatives," Synthetic metals, vol. 26, pp. 267-279, 1988.
    [38] M. Kobayashi, N. Colaneri, M. Boysel, F. Wudl, and A. Heeger, "The electronic and electrochemical properties of poly (isothianaphthene)," The Journal of chemical physics, vol. 82, pp. 5717-5723, 1985.
    [39] G. Boara and M. Sparpaglione, "Synthesis of polyanilines with high electrical conductivity," Synthetic metals, vol. 72, pp. 135-140, 1995.
    [40] T. A. Skotheim, Handbook of conducting polymers: CRC press, 1997.
    [41] G. Harsányi, "Polymer films in sensor applications: a review of present uses and future possibilities," Sensor Review, vol. 20, pp. 98-105, 2000.
    [42] S. S. Kumar, J. Mathiyarasu, K. Phani, and V. Yegnaraman, "Simultaneous determination of dopamine and ascorbic acid on poly (3, 4-ethylenedioxythiophene) modified glassy carbon electrode," Journal of Solid State Electrochemistry, vol. 10, pp. 905-913, 2006.
    [43] A. Bello, M. Giannetto, G. Mori, R. Seeber, F. Terzi, and C. Zanardi, "Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes," Sensors and Actuators B: Chemical, vol. 121, pp. 430-435, 2007.
    [44] X. Du and Z. Wang, "Effects of polymerization potential on the properties of electrosynthesized PEDOT films," Electrochimica Acta, vol. 48, pp. 1713-1717, 2003.
    [45] B. Krische and M. Zagorska, "Overoxidation in conducting polymers," Synthetic Metals, vol. 28, pp. 257-262, 1989.
    [46] S. Patra, K. Barai, and N. Munichandraiah, "Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes," Synthetic Metals, vol. 158, pp. 430-435, 2008.
    [47] L. D. Lapitan Jr, B. J. V. Tongol, and S.-L. Yau, "Molecular assembly and electropolymerization of 3, 4-ethylenedioxythiophene on Au (111) single crystal electrode as probed by in situ electrochemical STM in 0.10 M HClO4," Langmuir, vol. 26, pp. 10771-10777, 2010.
    [48] L. D. Lapitan, B. J. V. Tongol, and S.-L. Yau, "In situ scanning tunneling microscopy imaging of electropolymerized poly (3, 4-ethylenedioxythiophene) on an iodine-modified Au (111) single crystal electrode," Electrochimica Acta, vol. 62, pp. 433-440, 2012.
    [49] H. Sakaguchi, H. Matsumura, and H. Gong, "Electrochemical epitaxial polymerization of single-molecular wires," Nature materials, vol. 3, pp. 551-557, 2004.
    [50] A. Bard and L. Faulkner, "Electrochemical methods: fundamentals and applications John Wiley & Sons Inc New York Google Scholar," 2001.
    [51] M. Hsiao, R. Adžić, and E. Yeager, "Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer," Journal of the Electrochemical Society, vol. 143, pp. 759-767, 1996.

    下載圖示 校內:2022-07-05公開
    校外:2022-07-07公開
    QR CODE