| 研究生: |
彭忠驥 Peng, Jong-Chi |
|---|---|
| 論文名稱: |
非線性彈簧邊界之均勻曲樑的靜態分析 Static Analysis of Uniform Curved beams with Nonlinear Boundary Conditions |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 靜態 、非線性彈簧邊界 、曲樑 、移位函數法 |
| 外文關鍵詞: | static, nonlinear boundary condition, curved beam, shifting function method |
| 相關次數: | 點閱:191 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於非線性彈簧邊界之均勻曲樑的靜態分析中,首先利用漢米爾頓原理求得兩個耦合的微分方程式,再藉由兩個具有物理意義的參數簡化原來兩個耦合的微分方程式以便於分析。經由消去扭轉角後,兩個耦合的微分方程式非耦合化,而成為一個以位移為因變數的六階微分方程式。在使用Shifting function method將非線性邊界線性化,進而求得系統的實際解。最後再以一些極端的例子來說明推導的正確性,並討論邊界條件和曲率參數對曲樑位移、力矩和剪力的影響。
In Static Analysis of uniform beam with nonlinear boundary conditions, the two coupled governing equations are derived via the Hamilton’s principle. And they can be easily decoupled into a six orders differential equation after assuming two physical parameters and eliminating the rotation variable by Gaussian elimination. With help of the shifting function method, the nonlinear boundary conditions can be linearized. Combining the six orders decoupled governing equation with linearized boundary conditions, the exact solution is completed. To make sure the consequences are correct, some limiting cases are provided and discussed with different curvature and boundary conditions.
[1] S. Timoshenko, “Strength of materials, ” Part I, D. Van Nostrand. New jersey.
[2] L. Meirovitch, “Analytical Method in Vibrations,” Macmillan. New York.
[3] S. Y. Lee, S. M. Lin, “Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions,” Journal of Applied Mechanics-Transactions of the ASME, vol. 63, no.2, pp. 474-478, 1996.
[4] J. R. Banerjee, “Free vibration analysis of a twisted beam using the dynamic stiffness method, ” International Journal of Solid and Structures, vol. 38, pp. 6703-6722.
[5] S. Y. Lee, Y. H. Kuo, “Exact solutions for the analysis of general elastically restrained non-uniform beams, ” ASME Journal of Applied Mechanics, vol. 59, no. 2, pp. 205-212.
[6] F. Ma, J. D. Silva, “Iterative solutions for a beam equation with nonlinear boundary conditions of third order,”Applied Mathematics and Computation, vol. 159, pp. 11-18, 2004.
[7] S. Y. Lee, S. M. Lin, C. S, Lee, S. Y. Lu, Y. T. Liu, “Exact Large Deflection of beams with Nonlinear Boundary Conditions,” CMES, vol. 30, no. 1, pp. 27-36, 2008.
[8] F. Monase, G. Lewis, “Large deflection of point loaded cantilevers with nonlinear behavior,” Journal of Applied Mathmatics and physics, vol. 34, no. 12, pp. 124-130.
[9] I. Coskun, “Non-linear vibrations of a beam resting on a tensionlee Winkler foundation,”International Journal of Sound and Vibration, vol. 236, no. 3, pp. 401-411, 2004.
[10] H. Saffari, R. Rahgozar, R. Tabatabaei, “Nonlinear analysis of 2D-curved beam element s based on curvature shape function,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 1, pp. 63-78, 2007.
[11] A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity,” 4th ed, Dover, New York, 1944.
[12] F. C. Nelson, “Out-of-plane vibration of a clamped circular ring segment,” Journal of the Acoustical Society of American, vol. 35, no.6, pp.933-934, 1963.
[13] P. Childamparam, A. W. Leissa, “Vibration of planar curved beams rings and arches,” Applied Mechanics Reviews, vol. 46, no. 9, pp. 467-483, 1993.
[14] S. Y. Lee, J. J. Sheu, S. M. Lin, “In-plane vibration of rotating curved beam with elastically restrained root,” Journal of Sound and Vibration, vol. 315, pp. 1086-1102, 2008.
[15] Y. L. Pi, M. A. Bradford, N. S. Trahair, “Inelastic Analysis and Behavior of Steel I-Beams Curved in Plan,” Journal of Structural Engineering, pp. 772-779, 2000.
[16] V. Thevendran, S. Chen, N. E. Shanmugam, J. Y. Ricahrd. Liew, “Nonlinear analysis of steel-concrete composite beams curved in plan,” Finite Elements in Analysis and Design, vol. 32, pp. 125-139, 1999.
[17] S. Y. Lee, J. C. Chao, “Out of plane vibrations of curved non-uniform beams of constant radius, ” Journal of Sound and Vibration, pp. 433-458, 2000.
[18] 李建賢, “樑的非線性靜態分析,” 國立成功大學機械工程學系碩士論文, (2007)
[19] 林欣蓉, “時變性彈簧邊界之樑的振動,” 國立成功大學機械工程學系碩士論文, (2011)
[20] 張凱評, “非均勻變曲率樑的異平面振動分析,” 國立成功大學機械工程學系碩士論文, (2011)