簡易檢索 / 詳目顯示

研究生: 王威淳
Wang, Wei-Chung
論文名稱: Galectin-8和Parkin為A群鏈球菌感染所誘導的異源吞噬機制中多元複合體的組份之一
Galectin-8 and Parkin are parts of a multisubunit protein complex in group A streptococcal infection-induced xenophagic machinery
指導教授: 王淑鶯
Wang, Shu-Ying
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 74
中文關鍵詞: A群鏈球菌Galectin-8Parkin異源吞噬酵母菌雙雜合系統蛋白質交互作用
外文關鍵詞: group A Streptococcus (GAS), Galectin-8, Parkin, xenophagy, yeast two-hybrid system, protein-protein interaction
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化膿性鏈球菌 (Streptococcus pyogenes),又稱A群鏈球菌 (GAS),是人類常見的傳染性致病菌,於臨床上也造成許多疾病,包括:非侵入性感染所造成的咽喉炎,以及侵入性感染所造成的壞死性筋膜炎和鏈球性毒性休克症候群。在過去的研究中A群鏈球菌普遍被認為是屬於細胞外感染的致病菌,但近年來的文獻顯示,A群鏈球菌可以侵入至宿主的非免疫細胞中感染,藉此逃脫宿主的免疫反應以及抗生素治療,促使A群鏈球菌可以在細胞內存活並且複製,進而造成嚴重的侵襲疾病。近期有許多文獻顯示,非免疫細胞是可以透過溶酶體所介導的異源吞噬來清除掉內源性的病原菌。此外,前人先前的研究結果表示,Galectin-8會黏附於內含A群鏈球菌的囊泡中,並招集Parkin聚集至囊泡處進行泛素化修飾,從而啟動異源吞噬,導致A群鏈球菌被清除。然而,Galectin-8/Parkin相互作用所引起的異源吞噬的分子機制至今仍然是未知的。因此,在本篇研究中,主要探討在A群鏈球菌感染之下Galectin-8/Parkin 是如何形成複合體 (complex),以及此複合體是如何調控異源吞噬的機制。在實驗結果中,重組蛋白質Galectin-8和Parkin已被過度表現以及純化,並由大小排阻層析法 (size-exclusion chromatography) 證明此兩種蛋白質在體外 (in vitro) 並不直接相互作用,除此之外,也以酵母菌雙雜合系統 (yeast two-hybrid system)驗證Galectin-8和Parkin在體內 (in vivo) 也無物理上的接觸。最後以免疫共沈澱 (co-immunoprecipitation) 聯合液相層析質譜儀鑑定 (liquid chromatography-mass spectrometry) 於A群鏈球菌感染之下,與Galectin-8相互作用之蛋白質。根據我們結果得知,我們猜測Galectin-8和Parkin 在體內會形成多元複合體。因此,在未來的研究中,我們應鑑定其連接 Galectin-8和Parkin相關的蛋白質,並深入探討異源吞噬的詳細機制。最後,我們希望可以透過蛋白質結構為基礎,在未來能設計針對參與在異源吞噬中相關蛋白質的促進劑,藉此誘導異源吞噬,促進內源性A群鏈球菌的清除。

    Group A Streptococcus (GAS) causes a variety of human clinical diseases ranging from noninvasive infections such as pharyngitis to severe invasive infections involving necrotizing fasciitis and streptococcal toxic shock syndrome. Although GAS has been considered to be an extracellular pathogen, recent studies found that the internalization of GAS into nonimmune cells provides a strategy for GAS to escape killing by host immune responses and antibiotics treatment. Nevertheless, nonimmune cells use xenophagy to eliminate intracellular pathogens by promoting lysosome-mediated degradation. Previous studies showed that Galectin-8 binds to GAS-containing vacuoles and recruits Parkin to adapt ubiquitin leading to xenophagy during GAS infection. However, the molecular mechanism underlying the Galectin-8/Parkin interactions that induce xenophagy is still unknown. Hence, we aim to elucidate the molecular basis of the Galectin-8/Parkin complex to understand how the complex is modulated in xenophagic machinery during intracellular GAS infection. The recombinant Galectin-8 and Parkin were overexpressed and purified. Furthermore, size-exclusion chromatographic analysis demonstrated that these two proteins do not interact directly in vitro. In addition, Galectin-8 does not physically associate with Parkin in vivo by yeast two-hybrid system. Additionally, the co-immunoprecipitation coupled with liquid chromatography-mass spectrometry was employed to investigate which protein(s) or molecule(s) associates with Galectin-8 during GAS infection. Based on our results, we suggest that Galectin-8 and Parkin might take part of a multicomponent complex in vivo. Therefore, future studies should be focused on identifying proteins associated with Galectin-8 or Parkin to form a multisubunit protein complex and to have a better understanding of the detailed mechanism of xenophagy. These researches may provide us insights into a future therapeutic design for promoting xenophagy to eliminate GAS infection.

    Chinese Abstract I Abstract III Acknowledgement V Contents VI List of Figures X List of Tables XI Abbreviation XII Chapter 1 Introduction 1 1.1 Group A Streptococcus 1 1.1.1 Pathogenesis of group A Streptococcus 1 1.1.2 Virulence factors of group A Streptococcus 1 1.2 The correlation between GAS infection and immune response 2 1.3 The role of xenophagy in intracellular GAS infection 3 1.4 Galectin 4 1.4.1 The physiological function of Galectin 4 1.4.2 The roles of Galectin in group A streptococcal infection-induced xenophagy 5 1.5 Parkin 6 1.5.1 The physiological function of Parkin 6 1.5.2 The roles of Parkin in group A streptococcal infection-induced xenophagy 7 1.6 Rationale and specific aims 8 Chapter 2 Materials and Methods 9 2.1 Materials 9 2.1.1 Bacterial strains 9 2.1.2 Yeast strains 9 2.1.3 Cell line 10 2.1.4 Plasmids 10 2.1.5 Antibodies 12 2.1.6 Chemicals and other materials 12 2.2 Methods 17 2.2.1 Construction of LGALS8 and PARK2 overexpression plasmid 17 2.2.2 Transformation of LGALS8, PARK2 and Ulp1 plasmid 18 2.2.3 Protein overexpression and purification 18 2.2.3.1 Overexpression of Galectin-8, Parkin and Ulp1 18 2.2.3.2 Purification of Galectin-8 19 2.2.3.3 Purification of Parkin 20 2.2.3.4 Purification of Ulp1 21 2.2.4 Size-exclusion chromatography 22 2.2.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 22 2.2.6 Yeast two-hybrid system 22 2.2.6.1 Construction of Yeast two-hybrid plasmid 22 2.2.6.2 Transformation of Yeast two-hybrid plasmid 23 2.2.6.3 Yeast two-hybrid assay 24 2.2.7 Cell culture 24 2.2.8 Bacterial culture 24 2.2.9 Bacterial infection in HMEC-1 25 2.2.10 Western blotting analysis 25 2.2.11 Immunoprecipitation 26 2.2.12 Tryptic in-gel digestion 26 2.2.13 Liquid chromatography-tandem mass spectrometry 27 2.2.14 Database search 27 Chapter 3 Results 29 3.1 Overexpression and purification of Galectin-8-10xHis-SUMO 29 3.1.1 Induction test of Galectin-8-10xHis-SUMO 29 3.1.2 Overexpression and purification of Galectin-8-10xHis-SUMO protein 29 3.2 Overexpression and purification of Parkin-10xHis-SUMO 30 3.2.1 Induction test of Parkin-10xHis-SUMO 30 3.2.2 Overexpression and purification of Parkin-10xHis-SUMO protein 30 3.3 No direct interaction between Galectin-8-10xHis-SUMO and Parkin-10xHis-SUMO detected in vitro 31 3.4 Cleavage of 10xHis-SUMO tag from the fusion proteins by Ulp1 31 3.5 Removal of 10xHis-SUMO tag from Galectin-8-10xHis-SUMO to yield Galectin-8 protein 32 3.6 Removal of 10xHis-SUMO tag from Parkin-8-10xHis-SUMO to yield Parkin protein 32 3.7 No physical association between Galectin-8 and Parkin detected in vitro 33 3.8 No physical contact between Galectin-8 and Parkin detected in vivo 33 3.9 The additional partner(s) of a multicomponent Galectin-8/Parkin complex 34 Chapter 4 Conclusion 35 Chapter 5 Discussion 36 References 42 Tables 54 Figures 59 Appendix 73

    1. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. 2014. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev 27:264-301.
    2. Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. 2016. Streptococcus pyogenes adhesion and colonization. FEBS Lett 590:3739-57.
    3. Stevens DL. 2000. Streptococcal toxic shock syndrome associated with necrotizing fasciitis. Annu Rev Med 51:271-88.
    4. Stevens DL, Bryant AE. 2016. Severe group A streptococcal infections. In Ferretti JJ, Stevens DL, Fischetti VA (ed), Streptococcus pyogenes : Basic Biology to Clinical Manifestations.
    5. Lamagni TL, Darenberg J, Luca-Harari B, Siljander T, Efstratiou A, Henriques-Normark B, Vuopio-Varkila J, Bouvet A, Creti R, Ekelund K, Koliou M, Reinert RR, Stathi A, Strakova L, Ungureanu V, Schalen C, Strep ESG, Jasir A. 2008. Epidemiology of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol 46:2359-67.
    6. Fischetti VA. 2016. M protein and other surface proteins on streptococci. In Ferretti JJ, Stevens DL, Fischetti VA (ed), Streptococcus pyogenes : Basic Biology to Clinical Manifestations.
    7. Mcmillan DJ, Dreze PA, Vu T, Bessen DE, Guglielmini J, Steer AC, Carapetis JR, Van Melderen L, Sriprakash KS, Smeesters PR. 2013. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin Microbiol Infect 19:E222-9.
    8. Horstmann RD, Sievertsen HJ, Leippe M, Fischetti VA. 1992. Role of fibrinogen in complement inhibition by streptococcal M protein. Infect Immun 60:5036-41.
    9. Tweten RK, Hotze EM, Wade KR. 2015. The unique molecular choreography of giant pore formation by the cholesterol-dependent cytolysins of gram-positive bacteria. Annu Rev Microbiol 69:323-40.
    10. Chandrasekaran S, Caparon MG. 2015. The Streptococcus pyogenes NAD(+) glycohydrolase modulates epithelial cell PARylation and HMGB1 release. Cell Microbiol 17:1376-90.
    11. Hsieh CL, Huang HM, Hsieh SY, Zheng PX, Lin YS, Chiang-Ni C, Tsai PJ, Wang SY, Liu CC, Wu JJ. 2018. NAD-glycohydrolase depletes intracellular NAD(+) and inhibits acidification of autophagosomes to enhance multiplication of group A Streptococcus in endothelial cells. Front Microbiol 9:1733-44.
    12. Hsieh CL, Hsieh SY, Huang HM, Lu SL, Omori H, Zheng PX, Ho YN, Cheng YL, Lin YS, Chiang-Ni C, Tsai PJ, Wang SY, Liu CC, Noda T, Wu JJ. 2020. nicotinamide increases intracellular NAD(+) content to enhance autophagy-mediated group A streptococcal clearance in endothelial cells. Front Microbiol 11:117-30.
    13. Bastiat-Sempe B, Love JF, Lomayesva N, Wessels MR. 2014. Streptolysin O and NAD-glycohydrolase prevent phagolysosome acidification and promote group A Streptococcus survival in macrophages. MBio 5:e01690-14.
    14. Lu SL, Kuo CF, Chen HW, Yang YS, Liu CC, Anderson R, Wu JJ, Lin YS. 2015. Insufficient acidification of autophagosomes facilitates group A Streptococcus survival and growth in endothelial cells. MBio 6:e01435-15.
    15. Kaplan EL, Johnson DR. 2001. Unexplained reduced microbiological efficacy of intramuscular benzathine penicillin G and of oral penicillin V in eradication of group A Streptococci from children with acute pharyngitis. Pediatrics 108:1180-6.
    16. Fieber C, Kovarik P. 2014. Responses of innate immune cells to group A Streptococcus. Front Cell Infect Microbiol 4:140-7.
    17. Lin A, Loughman JA, Zinselmeyer BH, Miller MJ, Caparon MG. 2009. Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect Immun 77:5190-201.
    18. Lauth X, von Kockritz-Blickwede M, Mcnamara CW, Myskowski S, Zinkernagel AS, Beall B, Ghosh P, Gallo RL, Nizet V. 2009. M1 protein allows group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J Innate Immun 1:202-14.
    19. Nizet V. 2007. Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol 120:13-22.
    20. Cheng YL, Wu YW, Kuo CF, Lu SL, Liu FT, Anderson R, Lin CF, Liu YL, Wang WY, Chen YD, Zheng PX, Wu JJ, Lin YS. 2017. Galectin-3 inhibits galectin-8/parkin-mediated ubiquitination of group A Streptococcus. MBio 8: e00899-17.
    21. Hancz D, Westerlund E, Bastiat-Sempe B, Sharma O, Valfridsson C, Meyer L, Love JF, O'seaghdha M, Wessels MR, Persson JJ. 2017. Inhibition of inflammasome-dependent interleukin 1beta production by streptococcal NAD(+)-glycohydrolase: evidence for extracellular activity. MBio 8: e00756-17.
    22. Yang Z, Klionsky DJ. 2010. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124-31.
    23. Khaminets A, Behl C, Dikic I. 2016. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6-16.
    24. Mizushima N. 2007. Autophagy: process and function. Genes Dev 21:2861-73.
    25. Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell 132:27-42.
    26. Gatica D, Lahiri V, Klionsky DJ. 2018. Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20:233-42.
    27. Hu W, Chan H, Lu L, Wong KT, Wong SH, Li MX, Xiao ZG, Cho CH, Gin T, Chan MTV, Wu WKK, Zhang L. 2020. Autophagy in intracellular bacterial infection. Semin Cell Dev Biol 101:41-50.
    28. Ashrafi G, Schwarz TL. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31-42.
    29. Nakatogawa H, Mochida K. 2015. Reticulophagy and nucleophagy: new findings and unsolved issues. Autophagy 11:2377-8.
    30. Gomes LC, Dikic I. 2014. Autophagy in antimicrobial immunity. Mol Cell 54:224-33.
    31. Deretic V, Saitoh T, Akira S. 2013. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722-37.
    32. Figueira R, Watson KG, Holden DW, Helaine S. 2013. Identification of salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar Typhimurium: implications for rational vaccine design. MBio 4:e00065-13.
    33. Neumann Y, Bruns SA, Rohde M, Prajsnar TK, Foster SJ, Schmitz I. 2016. Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase. Autophagy 12:2069-84.
    34. Yoshimori T, Amano A. 2009. group A Streptococcus: a loser in the battle with autophagy. Curr Top Microbiol Immunol 335:217-26.
    35. Sakurai A, Maruyama F, Funao J, Nozawa T, Aikawa C, Okahashi N, Shintani S, Hamada S, Ooshima T, Nakagawa I. 2010. Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 285:22666-75.
    36. Levine B, Mizushima N, Virgin HW. 2011. Autophagy in immunity and inflammation. Nature 469:323-35.
    37. Bidon N, Brichory F, Bourguet P, Le Pennec JP, Dazord L. 2001. Galectin-8: a complex sub-family of galectins (Review). Int J Mol Med 8:245-50.
    38. Hong MH, Lin WH, Weng IC, Hung YH, Chen HL, Chen HY, Chen P, Lin CH, Yang WY, Liu FT. 2019. Intracellular galectins control cellular responses commensurate with cell surface carbohydrate composition. Glycobiology 12:49-57.
    39. Tribulatti MV, Carabelli J, Prato CA, Campetella O. 2019. Galectin-8 in the onset of the immune response and inflammation. Glycobiology 19:134-142
    40. Vasta GR. 2012. Galectins as pattern recognition receptors: structure, function, and evolution. Adv Exp Med Biol 946:21-36.
    41. Danguy A, Rorive S, Decaestecker C, Bronckart Y, Kaltner H, Hadari YR, Goren R, Zich Y, Petein M, Salmon I, Gabius HJ, Kiss R. 2001. Immunohistochemical profile of galectin-8 expression in benign and malignant tumors of epithelial, mesenchymatous and adipous origins, and of the nervous system. Histol Histopathol 16:861-8.
    42. Nishi N, Shoji H, Seki M, Itoh A, Miyanaka H, Yuube K, Hirashima M, Nakamura T. 2003. Galectin-8 modulates neutrophil function via interaction with integrin alphaM. Glycobiology 13:755-63.
    43. Eshkar Sebban L, Ronen D, Levartovsky D, Elkayam O, Caspi D, Aamar S, Amital H, Rubinow A, Golan I, Naor D, Zick Y, Golan I. 2007. The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation. J Immunol 179:1225-35.
    44. Hadari YR, Arbel-Goren R, Levy Y, Amsterdam A, Alon R, Zakut R, Zick Y. 2000. Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci 113:2385-97.
    45. Oyanadel C, Holmes C, Pardo E, Retamal C, Shaughnessy R, Smith P, Cortes P, Bravo-Zehnder M, Metz C, Feuerhake T, Romero Dt, Roa JC, Montecinos V, Soza A, Gonzalez A. 2018. Galectin-8 induces partial epithelial-mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin-Darby canine kidney cells. Mol Biol Cell 29:557-74.
    46. Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu GT, van der Goot FG, Sansonetti PJ, Lafont F. 2009. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6:137-49.
    47. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. 2009. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10:1215-21.
    48. Nio-Kobayashi J. 2017. Tissue- and cell-specific localization of galectins, β-galactose-binding animal lectins, and their potential functions in health and disease. Anat Sci Int 92:25-36.
    49. Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B, Amson R, Telerman A. 2004. TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279:46104-12.
    50. Kim SJ, Wang YG, Lee HW, Kang HG, La SH, Choi IJ, Irimura T, Ro JY, Bresalier RS, Chun KH. 2014. Up-regulation of neogenin-1 increases cell proliferation and motility in gastric cancer. Oncotarget 5:3386-98.
    51. Paz I, Sachse M, Dupont N, Mounier J, Cederfur C, Enninga J, Leffler H, Poirier F, Prevost MC, Lafont F, Sansonetti P. 2010. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol 12:530-44.
    52. Huang J, Brumell JH. 2014. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 12:101-14.
    53. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. 2012. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414-8.
    54. Seirafi M, Kozlov G, Gehring K. 2015. Parkin structure and function. FEBS J 282:2076-88.
    55. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA. 2013. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 4:1982-91.
    56. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205:143-53.
    57. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460:127-39.
    58. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119-31.
    59. Kumar A, Chaugule VK, Condos TEC, Barber KR, Johnson C, Toth R, Sundaramoorthy R, Knebel A, Shaw GS, Walden H. 2017. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat Struct Mol Biol 24:475-483.
    60. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, Knebel A, Alessi DR, Muqit MM. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2:120080-96.
    61. Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M, Shiba-Fukushima K, Sato S, Shimizu H, Fukunaga Y, Taniguchi H, Komatsu M, Hattori N, Mihara K, Tanaka K, Matsuda N. 2012. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 3:1016-26.
    62. Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS. 2013. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501:512-6.
    63. Sharma V, Verma S, Seranova E, Sarkar S, Kumar D. 2018. Selective autophagy and xenophagy in infection and disease. Front Cell Dev Biol 6:147-64.
    64. Kuo CJ, Hansen M, Troemel E. 2018. Autophagy and innate immunity: insights from invertebrate model organisms. Autophagy 14:233-42.
    65. Sun X, Zhang X, Zhai H, Zhang D, Ma S. 2019. Chicoric acid (CA) induces autophagy in gastric cancer through promoting endoplasmic reticulum (ER) stress regulated by AMPK. Biomed Pharmacother 118:109144-53.
    66. Zhao C, He R, Shen M, Zhu F, Wang M, Liu Y, Chen H, Li X, Qin R. 2019. PINK1/Parkin-mediated mitophagy regulation by reactive oxygen species alleviates rocaglamide a-induced apoptosis in pancreatic cancer cells. Front Pharmacol 10:968-81.
    67. Sui X, Liang X, Chen L, Guo C, Han W, Pan H, Li X. 2017. Bacterial xenophagy and its possible role in cancer: A potential antimicrobial strategy for cancer prevention and treatment. Autophagy 13:237-47.
    68. Levy Y, Auslender S, Eisenstein M, Vidavski RR, Ronen D, Bershadsky AD, Zick Y. 2006. It depends on the hinge: a structure-functional analysis of galectin-8, a tandem-repeat type lectin. Glycobiology 16:463-76.
    69. Kumar A, Aguirre JD, Condos TE, Martinez-Torres RJ, Chaugule VK, Toth R, Sundaramoorthy R, Mercier P, Knebel A, Spratt DE, Barber KR, Shaw GS, Walden H. 2015. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J 34:2506-21.
    70. Kupfer GM, Naf D, Suliman A, Pulsipher M, D'Andrea AD. 1997. The fanconi anaemia proteins, FAA and FAC, interact to form a nuclear complex. Nat Genet 17:487-90.
    71. Huber PA, Medhurst AL, Youssoufian H, Mathew CG. 2000. Investigation of Fanconi anemia protein interactions by yeast two-hybrid analysis. Biochem Biophys Res Commun 268:73-7.
    72. Kaddar T, Carreau M. 2012. Fanconi anemia proteins and their interacting partners: a molecular puzzle. Anemia 2012:425814-25.
    73. Walhout AJ, Boulton SJ, Vidal M. 2000. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17:88-94.
    74. Loregian A, Bortolozzo K, Boso S, Caputo A, Palu G. 2003. Interaction of Sp1 transcription factor with HIV-1 Tat protein: looking for cellular partners. FEBS Lett 543:61-5.
    75. Bruckner A, Polge C, Lentze N, Auerbach D, Schlattner U. 2009. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10:2763-88.
    76. Chakraborty J, Basso V, Ziviani E. 2017. Post translational modification of Parkin. Biol Direct 12:6-17.
    77. Um JW, Chung KC. 2006. Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res 84:1543-54.
    78. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A. 2006. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38:285-93.
    79. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, Matsuda N. 2015. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol 209:111-28.
    80. Fernandez MM, Ferragut F, Cardenas Delgado VM, Bracalente C, Bravo AI, Cagnoni AJ, Nunez M, Morosi LG, Quinta HR, Espelt MV, Troncoso MF, Wolfenstein-Todel C, Marino KV, Malchiodi EL, Rabinovich GA, Elola MT. 2016. Glycosylation-dependent binding of galectin-8 to activated leukocyte cell adhesion molecule (ALCAM/CD166) promotes its surface segregation on breast cancer cells. Biochim Biophys Acta 1860:2255-68.
    81. Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonça Bahia F, Parachin NS. 2018. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms 6:38-61.
    82. Kim BW, Hong SB, Kim JH, Kwon DH, Song HK. 2013. Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat Commun 4:1613-21.
    83. Kregel KC. 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177-86.
    84. Young JA, Sermwittayawong D, Kim HJ, Nandu S, An N, Erdjument-Bromage H, Tempst P, Coscoy L, Winoto A. 2011. Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production. J Biol Chem 286:6521-31.
    85. Jiang H, Wu L, Mishra M, Chawsheen HA, Wei Q. 2014. Expression of peroxiredoxin 1 and 4 promotes human lung cancer malignancy. Am J Cancer Res 4:445-60.
    86. Penke B, Bogar F, Crul T, Santha M, Toth ME, Vigh L. 2018. Heat shock proteins and autophagy pathways in neuroprotection: from molecular bases to pharmacological interventions. Int J Mol Sci 19;325-65.
    87. Chen RH, Chen YH, Huang TY. 2019. Ubiquitin-mediated regulation of autophagy. J Biomed Sci 26:80-92.
    88. Wilson HL, Daveson K, Del Mar CB. 2019. Optimal antimicrobial duration for common bacterial infections. Aust Prescr 42:5-9.
    89. Cole JN, Barnett TC, Nizet V, Walker MJ. 2011. Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9:724-36.
    90. Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, Di Stefano E, Mattei M, Silvestri R, Schippa S, Manzari V, Modesti A, Bei R. 2016. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour Biol 37:3705-17.

    無法下載圖示 校內:2025-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE