| 研究生: |
黃松輝 Huang, Song-Huei |
|---|---|
| 論文名稱: |
週期漸變型布雷格光纖光柵相位響應之重建與參數估測之研究 Phase Reconstruction of Chirped Fiber Bragg Grating and Parameter Estimation |
| 指導教授: |
黃振發
Huang, Jen-Fa 羅裕龍 Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 布雷格光纖光柵 、基因演算法 |
| 外文關鍵詞: | genetic algorithm, FBG |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
布雷格光纖光柵具有許多應用,尤其是在光纖通訊與光纖感測這兩個領域。在光纖通訊領域,色散是一個很重要的特性。由於系統元件的折射率變動會隨著波長變化,因此導致光脈衝變寬,使得接受端訊號難以辯識,所以,色散在光通訊系統中是一項很關鍵的參數。在光通訊系統中,週期漸變型布雷格光纖光柵可以用來做色散補償。為了補償色散,事先了解週期漸變型布雷格光纖光柵的相位響應特性是必須的。因此,近幾年來,許多布雷格光纖光柵的特性量測技術已經被發展出來了。
在此篇論文中,我們結合基因演算法與兩個溫度調變反射強度頻譜來達成週期漸變型布雷格光纖光柵之相位響應重建。我們利用溫度分佈梯度來調變週期漸變型布雷格光纖光柵反射強度頻譜與結合基因演算法來合成布雷格光纖光柵之參數。當基板受到兩個已知線性溫度梯度分佈作用時,我們可以得到兩個作為基因演算法目標函數之不同的反射強度頻譜。之後,利用基因演算法來尋求最佳參數,再藉由所求得之參數,重建出週期漸變型布雷格光纖光柵之相位響應。
我們所提出的方法,不僅具有簡單,成本低,非破壞性的優點,而且還可以解決週期漸變型布雷格光纖光柵的週期方向性問題。最後,我們用週期漸變型布雷格光纖光柵來驗證這個方法的可行性。
Fiber Bragg gratings (FBGs) had many applications, especially in optical fiber communications and optical fiber sensing. In optical fiber communications, chromatic dispersion is an important characterization, which broadens optical data pulses through the wavelength dependent on the refractive index variation of system elements, and becomes critical to system throughput. It is known that a chirped fiber Bragg Grating can be used for compensating chromatic dispersion in an optical fiber communication system. To compensate this dispersion, the phase response of the chirped FBG is needed. For this reason, many FBG characterization techniques have been developed in recent years.
In this thesis, we report the use of genetic algorithm and two thermally modulated reflection intensity spectra for the phase reconstruction of chirped FBGs. We apply temperature distributions to modulate the chirped FBG’s reflection intensity spectra and combine a genetic algorithm to synthesize FBG’s parameters. Two different reflection spectra are taken as objective spectra from a FBG when the substrate is applied to two known gradient temperature distributions. Then we employ the genetic algorithm to search for the parameters which generate the calculated reflection spectra by applying a T-matrix analysis to the objective spectra. Thus from these parameters, we can reconstruct the phase response of the FBG.
We have proposed a novel technique for phase reconstruction of chirped FBGs. The advantages of the proposed technique are simple, low cost, and nondestructive characterization. And this method can also resolve the ambiguity of chirped FBGs with opposite structures. One chirped FBG was used to demonstrate the feasibility and effectiveness of this technique. The experimental results have shown that the phase response of the grating can be successfully reconstructed.
[1]. K.O. Hill, and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, 1997.
[2]. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebile, “Fiber Grating Sensors,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1442-1463, 1997.
[3]. T. Dennis and P. Williams, “Relative Group Delay Measurements with 0.3 ps Resolution: Toward 40 Gbit/s Component Metrology,” Optical Fiber Communication Conf., pp. 254-256, 2002.
[4]. J. Kwon, S. Chung, Y. Jeong, and B. Lee, “Group-Delay-Tailored Chirped Fiber Bragg Gratings Using a Tapered Elastic Plate,” IEEE Photonics Technology Lett., vol. 14, no. 10, pp. 1433-1435, 2002.
[5]. D. Pastor, B. Ortega, J. Capmany, J. L. Cruz, J. Marti, M. V. Andres, E. Peral, M. J. Cole, R. I. Laming, “fully automatic simultaneous fiber grating amplitude and group delay characterization”, Microwave and Optical Technology Letter, vol. 14, no. 6, pp. 373-375, 1997.
[6]. S.D. Dyer and K.B. Rochford, “Low-coherence interferometric measurements of fiber Bragg grating dispersion,” Electron. Lett., vol 35, no. 17, pp. 1485-1486, 1999.
[7]. S. D. Dyer, K. B. Rochford, and A. H. Rose, “Fast and accurate low-coherence interferometric measurements of fiber Bragg grating dispersion and reflectance,” Optic Express , vol. 5, no. 11, pp. 262-266, 1999.
[8]. M. Volanthen, H. Geiger, M. J. Cole, R. I. Laming and J. P. Dakin, “Low coherence technique to characterize reflectivity and time delay as a function of wavelength within a long fiber grating,” Electron. Lett., vol 32, no. 8, pp. 757-758, 1996.
[9]. C. J. Brooks, G. L. Vossler, and K. A. Winick, “Integrated-optic dispersion compensator that uses chirped gratings,” Optic Lett., vol. 20, no. 4, pp. 368-370, 1995.
[10]. S. Barcelos, M. N. Zervas, R. I. Laming, D. N. Payne, L. Reekie, J. A. Tucknott, R. Kashyap, P. F. Mckee, F. Sladen and B. Wojciechowicz, “High accuracy dispersion measurements of chirped fiber gratings,” Electron. Lett., vol 31, no. 15, pp. 1280-1282, 1996.
[11]. D. W. Huang and C. C. Yang, “Reconstruction of fiber grating refractive index profiles from complex Bragg reflection spectra,” Applied Optics, vol. 38, no. 21, pp. 4494-4499, 1999.
[12]. A. Carballar and M. A. Muriel, “Phase Reconstruction from Reflectivity in Fiber Bragg Gratings,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1314-1322, 1997.
[13]. J. Skaar and H. E. Engan, “Phase reconstruction from reflectivity in fiber Bragg gratings,” Optic Lett., vol. 24, no. 3, pp. 136-138, 1997.
[14]. D. Pastor and J. Capmany, “Experimental demonstration of phase reconstruction from reflectivity in uniform fiber Bragg gratings using the Wiener-Lee transform,” Electron Lett., vol 34, no. 13, pp. 1344-1345, 1998.
[15]. C. Z. Shi, N. Zhang, Y. B. Liao, S. R. Lai, “Non-minimum phase reconstruction from amplitude data in fiber Bragg gratings using an adaptive simulated annealing algorithm,” Optics & Laser Technology, 36, pp. 259-264, 2004.
[16]. H. C. Cheng and Y. L. Lo, “The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally-modulated intensity spectra,” IEEE J. Lightwave Technol., vol. 23, no. 6, pp. 2158-2168, 2005.
[17]. T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol., vol.15, no. 8, pp.1277-1294, 1997.
[18]. S. Gupta, T. Mizunami, and T. Shimomura, “Computer Control of Fiber Bragg Grating Spectral Characteristics Using a Thermal Head,” IEEE J. Lightwave Technol., vol. 15, no. 10, pp. 1925-1928, 1997.
[19]. B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, and K. Kikuchiand, “Adjustable Dispersion-Compensation Devices With Wavelength Tunability Based on Enhanced Thermal Chirping of Fiber Bragg Gratings,” IEEE Photonics Technology Lett., vol. 15, no. 3, pp. 416-418, 2003.
[20]. J. Lauzon, S. Thibault, J. Martin, and F. Ouellettet, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Optics Lett., vol. 19, no. 23, pp. 2027-2029, 1994.
[21]. S. K. Khijwania, C. S. Goh, S. Y. Set, K. Kikuchi, “A novel tunable dispersion slope compensator based on nonlinearly thermally chirped fiber Bragg grating,” Optics Communications , 227, pp. 107–113, 2003.
[22]. B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable Dispersion Compensation in a 160-Gb/s TDM System by a Voltage Controlled Chirped Fiber Bragg Grating,” IEEE Photonics Technology Lett., vol.12, no. 8, pp. 1022-1024, 2000.
[23]. S. Huang, M. LeBlanc, M. M. Ohn, and R. M. Measures, “Bragg intragrating structural sensing,” Applied Optics, vol. 34, no. 22, pp. 5003-5009, 1995.
[24]. J. H. Holland, Adaption in Natural and Artificial Systems. Cambridge, MA: The M.I.T Press, 1975.
[25]. Z. Michalewicz, Genetic Algorithms + Data structures = Evolution Programs, New York: Springer-Verlag, 1992.
[26]. L. Davis, Handbook of Genetic Algorithm, Van Nostrand Reinhold, New York, 1991.
[27]. G. Cormier, R. Boudreau, S. Theriault, “Real-coded genetic algorithm for Bragg grating parameter synthesis,” JOSA B, vol. 18, no. 12, pp. 1771-1776, 2001.
[28]. C. L. Lee and Y. Lai, “Evolutionary Programming Synthesis of Optimal Long-period Fiber Grating Filters for EDFA Gain Flattening,” IEEE Photonic Technology Lett., vol. 14, no. 11, pp. 1557-1559, 2002.
[29]. C. J. Brooks, G. L. Vossler, and K. A. Winick, “Phase response measurement technique for waveguide grating filters,” Appl. Phys. Lett., vol. 66, no. 17, pp. 2168-2170, 1995.
[30]. X. S. Yao and J. Feinberg, “Simple in-line method to measure the dispersion of an optical system,” Appl. Phys. Lett., vol. 62, no. 8, pp. 811-813, 1993.
[31]. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” Journal of Biomedical Optics, vol. 7, no. 3, pp. 457-463, 2002.
[32]. G. Hausler, M. W. Lindner, “”Coherence Radar” and “Spectral Radar”-New Tools for Dermatological Diagnosis,” Journal of Biomedical Optics, vol. 3, no. 1, pp. 21-31 1998.
校內:2010-07-15公開