| 研究生: |
李凱霖 Lee, Kai-Lin |
|---|---|
| 論文名稱: |
應用液相氧化法為閘極介電層於變晶砷化銦鋁/砷化銦鎵高速電子移動率電晶體之研究 InAlAs/InGaAs Metamorphic High Electron Mobility Transistors with a Liquid Phase Oxidized InAlAs as Gate Insulator |
| 指導教授: |
蔡宗祐
Tsai, Tzong-Yow 王永和 Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 變晶 |
| 外文關鍵詞: | metamorphic |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們致力研究液相氧化法於砷化銦鋁材料上的特性表現。相較於其他氧化系統,液相氧化法系統不須外加其他能量輔助,僅需要酸鹼值測定器及溫度調節器保持操作在30-70 ℃環境便能成長均勻氧化薄膜。
在元件應用方面,我們成功應用液相氧化法於砷化銦鋁/砷化銦鎵高速電子移動率電晶體形成金氧半高速電子移動率結構,和傳統高速電子動率電晶體相比較,兩者皆具有完全夾止之特性,傳統高速電子移動率在最大閘極0 V偏壓下最大汲極電流304 mA/mm,最大轉導284 mS/mm,逆向崩潰電壓為-7.4 V;金氧半高速電子移電率電晶體在最大閘極1 V偏壓下最大汲極電流424 mA/mm,最大轉導254 mS/mm,逆向崩潰電壓-15.1 V,此外金氧半結構閘極漏電流可以改善超過5.5萬倍。高頻特性方面,傳統高速電子移動率電晶體及金氧半高速電子移動率電晶體之截止頻率分別為14.3 GHz及32.1 GHz,最大震盪頻率分別約30.6 GHz及59.4 GHz。
We have demonstrated that liquid phase oxidation (LPO) technique to grow native oxide films on InAlAs. The liquid phase oxidation system is simple, low cost and low temperature in comparison with the other oxidation system.
In addition, the InAlAs/InGaAs metamorphic HEMTs with a liquid phase oxidized InAlAs as gate insulators have been successfully fabricated. Both conventional HMET and metal-oxide-semiconductor metamorphic HEMT (MOS-MHEMT) with gate length and width of 0.65 μm × 200 μm exhibit complete pinch-off characteristics. For the conventional MHEMTs, the maximum drain current density is 304 mA/mm at maximum gate-to-source voltage of 0 V. The peak extrinsic transconductance is 284 mS/mm and the breakdown voltage is -7.4 V. For the MOS-MHEMT with gate oxide thickness of 6.3 nm, the maximum drain current density is 424 mA/mm at maximum gate-to-source voltage of 1 V. The peak extrinsic transconductance is 254 mS/mm. The breakdown voltage is -15.1 V. In addition, the gate leakage current density can be significantly improved for about 55,000 fold in the MOS-MHEMT structure in comparison with conventional MHEMT.
Furthermore, the cutoff frequencies of conventional MHEMTs and MOS-MHEMTs are 14.3 GHz and 32.1 GHz; the maximum oscillation frequencies are 30.6 GHz and 50.9 GHz, respectively.
[1] W. Schockley, “Circuit elements utilizing semiconductive material,” U.
S. Patent, N. 2569, p. 347, 1951.
[2] F. Ali and A. Gupta, HEMTs and HBTs: Devices, Fabrication and Circuits,
Boston.London: Artech House, 1991.
[3] R. Dingle, H. L. Störmer, A. C. Gossard and W. Wiegmann, “Electron
mobilities in modulation-doped semiconductor heterojunction
superlattices,” Appl. Phys. Lett., vol. 33, pp. 665-667, 1978.
[4] H. L. Störmer, R. Dingle, A. C. Gossard, W. Wiegmann and M. D. Sturge,
“Two dimensional electron gas at a semiconductor-semiconductor
interface,” Solid-State Comm., vol. 29, pp. 705-709, 1979.
[5] T. Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, “A new field effect
transistor with selectively doped GaAs/n-AlGaAs heterostructures,” Jpn.
J. Appl. Phys., vol. 19, pp. L225-L227, 1980.
[6] D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Labnion, J. Chaplart and
N. T. Linh, “Two dimensional electron gas MESFET structure,” Electronics
Letters, vol. 16, pp. 667-668, 1980.
[7] S. L. Su, R. Fisher, T. Drummond, W. Lyons, R. Thorne, W. Kopp and H.
Morkoc, “Modulation-doped AlGaAs/GaAs FET’s with high transconductance
and saturation velocity,” Electronics Letters, vol. 18, pp. 794-796, 1982.
[8] T. W. Hickmott, P. M. Solomon, R. Fischer and H. Morkoc, “Negative
charge, barrier heights, and the conduction-band discontinuity in AlxGa1-
xAs capacitors,” J. Appl. Phys., vol. 57, p. 2844, 1985.
[9] S. Subramanian, “Model for the temperature dependence of the threshold
voltage of modulation-doped field-effect transistors,” IEEE Trans.
Electron Devices, vol. 32, pp. 865-870, 1985.
[10] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers:
I. Misfit dislocations,” J. Crystal Growth, vol. 27, pp. 118-125, 1974.
[11] A. Ketterson, M. Moloney, W. T. Masselink, J. Klem, R. Fischer, W. Kopp
and H. Morkoc, “High transconductance InGaAs/AlGaAs pseudomorphic
modulation- doped field-effect transistors,” IEEE Electron Device
Letters, vol. 6, pp.628-630, 1985.
[12] A. Thomasian, A. A. Rezazadeh and L. G. Hipwood, “Observation and
mechanism of kink effect in depletion-mode AlGaAs/GaAs and AlGaAs/GaInAs
HEMTs,” Electronics Letters, vol. 25, pp.351-353, 1989.
[13] F. Schwierz and J. J. Liou, Modern microwave transistors, New Jersey:
John Wiley & Sons, Inc., 2003.
[14] A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, W. Kopp, H. Morkoc
and K. R. Gleason, “Characterization of InGaAs/AlGaAs pseudomorphic
modulation-doped field effect transistors,” IEEE Trans. Electron
Devices, vol. 33, pp. 564-571, 1986.
[15] A. Cappy, B. Carnez, R. Fauquembergues, G. Salmer and E. Constant,
“Comparative potential performance of Si, GaAs, GaInAs, InAs
submicrometer-gate FET’s,” IEEE Trans. Electron Devices, vol. 27, pp.
2158-2160, 1980.
[16] K. Inoue, J. C. Harmand and T. Matsumo, “High-quality InxGa1-xAs/InAlAs
modulation-doped heterostructures grown lattice-mismatched on GaAs
substrates,” J. Crystal Growth, vol. 111, pp. 313-317, 1992.
[17] W. Kruppa and J. B. Boos, “Examination of the kink effect in
InAlAs/InGaAs/InP HEMT’s using sinusoidal and transient excitation,”
IEEE Trans. Electron Devices, vol. 42, pp. 1717-1723, 1995.
[18] H. H. Wang, Y. H. Wang and M. P. Houng, “Near room temperature selective
oxidation on GaAs using photoresist as a mask,” Jpn. J. Appl. Phys.,
vol. 37, pp. L988-L990, 1998.
[19] H. H. Wang, J. Y. Wu, Y. H. Wang and M. P. Houng, “Effect of pH values
on the kinetics of liquid phase chemical enhanced oxidation of GaAs,” J.
Electrochem. Soc., vol. 146, pp. 2328-2332, 1999.
[20] J. Y. Wu, H. H. Wang, Y. H. Wang and M. P. Houng, “A GaAs MOSFET with a
liquid phase oxidized gate,” IEEE Electron Device Letters, vol. 20, pp.
18-20, 1999.
[21] J. W. Wu, H. H. Wang, Y. H. Wang and M. P. Houng, “GaAs MOSFET’s
fabrication with a liquid phase oxidized gate,” IEEE Trans. Electron
Devices, vol. 48, pp. 634-637, 2001.
[22] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “Liquid phase chemical
enhanced oxidation on AlGaAs and its application,” Jpn. J. Appl. Phys.,
vol. 43, pp. 4087-4091, 2004.
[23] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “AlGaAs/InGaAs metal-
oxide-semiconductor pseudomorphic high-electron-mobility transistor with
a liquid phase oxidized AlGaAs as gate dielectric,” Solid-State
Electron, vol. 49, pp. 213-217, 2005.
[24] K. W. Lee, N. Y. Yang, M. P. Houng and Y. H. Wang, “Improved breakdown
voltage and impact ionization in InAlAs/InGaAs metamorphic high- electron-
mobility transistor with a liquid phase oxidized InGaAs gate,” Appl.
Phys. Lett., vol. 87, 2005.
[25] K. W. Lee, P. W. Sze, Y. J. Lin, N. Y. Yang, M. P. Houng and Yeong-Her
Wang, “InGaP/InGaAs metal-oxide-semiconductor pseudomorphic high-
electron- mobility transistor with a liquid-phase-oxidized InGaP as gate
dielectric,” IEEE Electron Device Letters, vol. 26, pp. 864-866, 2005.
[26] S. K. Ghandhi, VLSIFabrication Principles: Silicon and Gallium Arsenide,
NEW York: John Wiley & Sons, Inc., 1994.
[27] D. J. Coleman, D. W. Shaw and R. D. Dobrott, “On the mechanism of GaAs
anodization,” J. Electrochem. Soc., vol. 124, pp. 239-241, 1977.
[28] M. Tong, K. Nummila, A. Ketterson, I. Adesida, C. Caneau and R. Bhat,
“InAlAs/InGaAs/InP MODFET’s with uniform threshold voltage obtained by
selective wet gate recess,” IEEE Electron Device Letters, vol. 13, no.
10, 1992.
[29] J. R. Meyer-Arendt, Introduction to classical and modern optics,
Englewood Cliffs, N. J.: Prentice-Hall Inc., 1971.
[30] T. Sugano, “Oxidation of GaAs1-xPx surface by oxygen plasma and
properties of oxide film,” J. Electrochem. Soc., vol. 121, pp. 113-118,
1974.
[31] L. Sadwick, C. Kim, K. Tan and D. Streit, “Schottky barrier heights of n-
type and p-type Al0.48In0.52As,” IEEE Electron Device Letters, vol. 12,
pp. 626-628, 1991.
[32] K. L. Lee, K. W. Lee, M. H. Tsai, P. W. Sze, M. P. Houng and Y. H. Wang,
“InAlAs/InGaAs metamorphic high electron mobility transistor with a
liquid phase oxidized InAlAs as gate dielectric,” in IEEE Conf. on
Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, Dec.
19-21, 2005, pp. 613-616.
[33] S. R. Bahl and J. A. del Alamo, “Elimination of mesa-sidewall gate
leakage in InAlAs/InGaAs heterostructures by selective sidewall
recessing,” IEEE Electron Device Letters, vol.13, pp. 195-197, 1992.
[34] R. People, K. W. Wecht, K. Alavi and A. Y. Cho, “Measurement of the
conduction-band discontinuity of molecular bean epitaxial grown
In0.52Al0.48As/In0.53Ga0.47As, N-n heterojunction by C-V profiling,”
Appl. Phys. Lett., vol. 43, pp. 118-120, 1983.
[35] T. Suemitsu, T. Enoki, M. Tomizawa, N. Shigekawa, Y. Ishii, “Mechanism
and structural dependence of kink phenomena in InAlAs/InGaAs HEMTs,” in
International Conf. on Indium Phosphide and Related Materials, Hyannis,
USA, May. 11-15, 1997, pp. 365-368.
[36] H. L. Hartnagel, Microwave noise in semiconductor devices, New York, John
Wiley & Sons, 1991.
[37] N. C. Paul, K. Nakamura, H. Seto, K. Iiyama and S. Takamiya, “Oxidation
of InAlAs and its application to gate insulator of InAlAs/InGaAs metal
oxide semiconductor high electron mobility transistor,” Jpn. J. Appl.
Phys., vol. 44, pp. 1174-1180, 2005.
[38] M.Boudrissa, E. Delos, Y. Cordier, D. Théron and J. C. De Jaeger,
“Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs
substrate with high breakdown voltage,” IEEE Electron Device Letters,
vol. 21, pp. 512-514, 2000.
[39] J. P. Ao, Q. M. Zeng, Y. L. Zhao, X. J. Li, W. J. Liu, S. Y. Liu and C.
G. Liang, “InP-based enhancement-mode pseudomorphic HEMT with strained
In0.45As0.55As barrier and In0.75Ga0.25As channel layers,” IEEE Electron
Device Letters, vol. 21, pp. 200-202, 2000.
[40] K. J. Chen, T. Enoki, K. Maezawa and K. Arai, “High-performance InP-
based enhancement-mode HEMT’s using non-alloyed ohmic contacts and Pt-
based buried-gate technologies,” IEEE. Trans. Electron Devices, vol. 43,
pp. 252-257, 1996.
[41] N. Wichmann, I. Duszynski, X. Wallart, s. Bollaert and A. Cappy,
“InAlAs/InGaAs double gate HEMTs on transferred substrate,” IEEE
Electron Devce Letters, vol. 25, pp. 354-356, 2004.
[42] A. Mahajan, M. Arafa, P. Fay, C. Caneau and I. Adesida, “Enhancement-
mode high electron mobility transistors (E-HEMT’s) lattice-matched to
InP,” IEEE Trans. Electron Devices, vol. 45, pp. 2422-2429, 1998.
[43] D. J. Dumin and J. R. Maddux, “Correlation of stress-induced leakage
current in thin oxides with trap generation inside the oxides,” IEEE
Trans. Electron Devices, vol. 40, pp. 986-993, 1993.
[44] T. Suemitsu, T. Enoki, N. Sano, M. Tomizawa and Y. Ishii, ”An analysis
of the kink phenomena in InAlAs/InGaAs HEMT’s using two-dimensional
device simulation,” IEEE Trans. Electron Devices, vol. 45, p. 2390, 1998.
[45] I. Thayne, “Advanced Ⅲ-Ⅳ HEMTs,” The advanced semiconductor magazine,
vol.16, pp. 48-51, 2003.
[46] I. Thayne, “Advanced Ⅲ-Ⅳ HEMTs,” The advanced semiconductor magazine,
vol.16, pp. 48-51, 2003.
[47] C. L. Lau, M. Feng, T. R. Lepkowski, G. W. Wang, Y. Chang and C. Ito,
“Half-micrometer gate-length ion-implanted GaAs MESFET with 0.8-dB noise
figure at 16 GHz,” IEEE Electron Device Letters, vol. 10, pp. 409-411,
1989.