| 研究生: |
蘇柏誠 Su, Po-Cheng |
|---|---|
| 論文名稱: |
應用弧長法與移動最小二乘法於旋轉體薄殼大變形分析 Large deformation analysis of the shells of revolution by the arc-length and moving least squares methods |
| 指導教授: |
王永明
Wang, Yong-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 薄殼大變形理論 、移動最小二乘法 、弧長法 、非線性分析 |
| 外文關鍵詞: | The theory of large deformation shell, Moving least square method, Arc-length method, The non-linear analysis |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文引用薄殼大變形理論,將應變與變位關係之幾何方程式及應力與應變關係之本構方程式、應力與外力關係之平衡方程式導入旋轉體薄殼之參數,進行旋轉薄殼大變形分析。其數值方法為利用移動最小二乘法搭配擬Hermite型式,將薄殼大變形理論較複雜之本構方程式及平衡方程式進行簡化,數值迭代求解方法為弧長法,將上述非線性方程式導成增量式後,即可進行線性化迭代,如此將可以分析薄殼大變形後之非線性行為,如:挫屈、突跳,由於弧長法不同於一般力控制與位移控制之迭代方法,其可較準確描述非線性後之路徑,所以可知道挫屈及突跳發生後之力與位移關係是如何變化。本文數值範例即分析封閉旋轉體薄殼挫屈及開放旋轉體薄殼突跳之行為。
This study refers to the theory of the large deformation shell, where subs the arguments of the shell of revolution is substituded into the geometric equations of relationship between the strain and displacement. The constitutive equations of the relationship between the stress and strain and the equilibrium equations of relationship between the stress and external force are also used in the large deformation analysis of the shell of revolution in the part of the numerical analysis, we use the moving least square method with the Quasi-Hermit type formulation to simplify the equations of the constitution and equilibrium. For the method of numerical iterations, we use the arc-length method to derive the non-linear equations with the increment scheme, and can perform the linear iteration and analyze the non-linear behavior of the large deformation of the shell, ex: buckling and snap through. Since the arc-length method is different from the general iteration methods of the force control and displacement control, it can be more accurate description of the post non-linear path. Thus, we can know how the relationship between forces and displacements changes after the buckling or snap through. In numerical examples, we analyze the behavior of the shell buckling of closed revolution and the shell snap through of open revolution, and all the results are reasonably accurate.
[1] Fauvel, John. "Algorithms in the Pre-Calculus Classroom: Who Was Newton-Raphson?" Mathematics in School 27.4 (1998): 45-47.
[2] Broyden, Charles G. "A class of methods for solving nonlinear simultaneous equations." Mathematics of Computation 19.92 (1965): 577-593.
[3] Broyden, Charles G. "Quasi-Newton methods and their application to function minimization." Mathematics of Computation 21.99 (1967): 368-381.
[4] Shanno, David F. "Conditioning of quasi-Newton methods for function minimization." Mathematics of Computation 24.111 (1970): 647-656.
[5] Wempner, Gerald A. "Discrete approximations related to nonlinear theories of solids." International Journal of Solids and Structures 7.11 (1971): 1581-1599.
[6] Riks, Eduard. "The application of Newton’s method to the problem of elastic stability." Journal of Applied Mechanics 39.4 (1972): 1060-1065.
[7] Riks, E. "An incremental approach to the solution of snapping and buckling problems." International Journal of Solids and Structures 15.7 (1979): 529-551.
[8] Ramm, Ekkehard. "Strategies for tracing the nonlinear response near limit points." Nonlinear Finite Element Analysis in Structural Mechanics. Springer Berlin Heidelberg, (1981). 63-89.
[9] Crisfield, M. A. "A fast incremental/iterative solution procedure that handles “snap-through”." Computers & Structures 13.1 (1981): 55-62.
[10] Crisfield, M. A. "An arc‐length method including line searches and accelerations." International Journal for Numerical Methods in Engineering 19.9 (1983): 1269-1289.
[11] Pecknold, D. A., J. Ghaboussi, and T. J. Healey. "Snap-through and bifurcation in a simple structure." Journal of Engineering Mechanics 111.7 (1985): 909-922.
[12] Bellini, P. X., and A. Chulya. "An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations." Computers & Structures 26.1 (1987): 99-110.
[13] Forde, Bruce WR, and Siegfried F. Stiemer. "Improved arc length orthogonality methods for nonlinear finite element analysis." Computers & structures 27.5 (1987): 625-630.
[14] Al-Rasby, S. N. "Solution techniques in nonlinear structural analysis." Computers & Structures 40.4 (1991): 985-993.
[15] Fafard, M., and B. Massicotte. "Geometrical interpretation of the arc-length method." Computers & Structures 46.4 (1993): 603-615.
[16] Carrera, Erasmo. "A study on arc-length-type methods and their operation failures illustrated by a simple model." Computers & Structures 50.2 (1994): 217-229.
[17] Zhou, Zhilong, and D. W. Murray. "An incremental solution technique for unstable equilibrium paths of shell structures." Computers & Structures 55.5 (1995): 749-759.
[18] Huang, B-Z., and S. N. Atluri. "A simple method to follow post-buckling paths in finite element analysis." Computers & Structures 57.3 (1995): 477-489.
[19] May, I. M., and Y. Duan. "A local arc-length procedure for strain softening." Computers & structures 64.1 (1997): 297-303.
[20] Hellweg, H-B., and M. A. Crisfield. "A new arc-length method for handling sharp snap-backs." Computers & Structures 66.5 (1998): 704-709.
[21] 李元齊,沈祖炎,"弧長控制類方法使用中若干問題的探討與改進",計算力學學報15 (1998): 4.
[22] Memon, Bashir-Ahmed, and Xiao-zu Su. "Arc-length technique for nonlinear finite element analysis." JOURNAL-ZHEJIANG UNIVERSITY SCIENCE 5.5 (2004): 618-628.
[23] 楊禮龍,蕭國模,"薄殼結構在位移負荷作用下之幾何非線性分析" ,國立交通大學機械工程研究所碩士論文,2006。.
[24] 陳宣穆," 旋轉體薄殼之大變形分析" ,國立成功大學土木工程研究所碩士論文,2007。
[25] 張祐綱. "Hermite type 之移動最小二乘法在板, 梁分析上之應用." 成功大學土木工程學系學位論文,2009。
[26] 林均威. "受束制之移動最小二乘法在古典板上之應用." 成功大學土木工程學系學位論文,2013。
[27] 張延宗," 基於狀態變數與Hermite型近似之移動最小二乘法在古典版之應用" ,國立成功大學土木工程研究所碩士論文, 2014。
[28] 嚴和熙," 應用移動最小二乘法於旋轉體薄殼大變形分析" ,國立成功大學土木工程研究所碩士論文, 2015。
[29] Lucy, Leon B. "A numerical approach to the testing of the fission hypothesis." The astronomical journal 82 (1977): 1013-1024.
[30] Nayroles, B., G. Touzot, and P. Villon. "Generalizing the finite element method: diffuse approximation and diffuse elements." Computational Mechanics 10.5 (1992): 307-318.
[31] Belytschko, Ted, Yun Yun Lu, and Lei Gu. "Element‐free Galerkin methods." International Journal for Numerical Methods in Engineering 37.2 (1994): 229-256.
[32] Liu, Wing Kam, Sukky Jun, and Yi Fei Zhang. "Reproducing kernel particle methods." International Journal for Numerical Methods in Fluids 20.8‐9 (1995): 1081-1106.
[33] Belytschko, Ted, et al. "Meshless methods: an overview and recent developments." Computer Methods in Applied Mechanics and Engineering 139.1 (1996): 3-47.
[34] Chen, Jiun-Shyan, et al. "A stabilized conforming nodal integration for Galerkin mesh-free methods." International Journal for Numerical Methods in Engineering 50.2 (2001): 435-466.
[35] Wang, Yung-Ming, Syuan-Mu Chen, and Chih-Ping Wu. "A meshless collocation method based on the differential reproducing kernel interpolation." Computational mechanics 45.6 (2010): 585-606.