簡易檢索 / 詳目顯示

研究生: 戴憶涵
Dai, Yi-Han
論文名稱: Rigosertib藥物造成瀰漫性大B細胞淋巴瘤細胞死亡的調控機制
The regulatory mechanism of cell death by rigosertib in diffuse large B-cell lymphoma (DLBCL)
指導教授: 張孔昭
Chang, Kung-Chao
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 53
中文關鍵詞: 瀰漫性大B細胞淋巴瘤類小泛素化蛋白c-MybTRAF6Rigosertib
外文關鍵詞: DLBCL (diffuse large B-cell lymphoma), c-Myb, SUMO1, Rigosertib, TRAF6
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瀰漫性大B細胞淋巴瘤屬非何傑金氏淋巴瘤中最普遍且具侵略性的的類別,其中約30%患者對於後續的治療並無效果或伴隨產生抗性,甚至達半數的病患無法承受高劑量的傳統化學治療。先前的研究指出多重激酶抑制劑Rigosertib能選擇性的毒殺瀰漫性大B細胞淋巴瘤細胞而不毒害非增生性淋巴母細胞。Rigosertib將誘導瀰漫性大B細胞淋巴瘤細胞株中RanGAP1高度磷酸化與類小泛素化,而類小泛素化對於核質中蛋白的運輸與轉錄基因的活性抑制扮演著重要的角色。Rigosertib能使多數腫瘤細胞株死亡,然而在瀰漫性大B細胞淋巴瘤細胞中確切的死亡機制途徑仍尚未明瞭。因此本篇目標將於體外與體內分析Rigosertib的藥效並進一步探討其在腫瘤生物分子層面的影響。首先, 利用MTT(CCK-8)分析去偵測Rigosertib藥物處理過後非增生性淋巴母細胞以及瀰漫性大B細胞淋巴瘤細胞株的細胞存活率,結果發現Rigosertib具選擇性毒殺且極具潛能能發展成瀰漫性大B細胞淋巴瘤的標靶藥物;有趣的是, 利用核質分離分析上發現,經Rigosertib處理過後能抑制RanGAP1 / TRAF6 / c-Myb這些被類小泛素化的蛋白質入核表現;並且進一步透過免疫共沉澱分析發現被類小泛素化的RanGAP1 / TRAF6 / c-Myb蛋白質間的交互關係。本篇研究中,結果顯示Rigosertib經 RanGAP1*SUMO1途徑中Ubc9引起的類小泛素化作用而牽曳c-Myb蛋白使坐落於細胞質中,最終達到抑制c-Myb蛋白的表現活性,因此我們認為Rigosertib是極具潛能可發展成治療瀰漫性大B細胞淋巴瘤的藥物。專一性地抑制c-Myb和TRAF6蛋白表現將引起細胞凋亡並造成細胞週期受阻。因為在其他惡性腫瘤中c-Myb和TRAF6蛋白表現異常,因此未來在臨床的治療應用上, c-Myb或是TRAF6將是一個廣泛且可行的治療目標。綜合以上結果,這些研究資料結果能支持Rigosertib未來應用在治療瀰漫性大B細胞淋巴瘤的臨床藥物發展。

    Diffuse large B-cell lymphoma (DLBCL), the most common lymphoma, shows either no response or development of resistance to further treatment in 30% patients. Even approximately half of patients are not eligible for high-dose chemotherapy. Previous studies report that rigosertib (ON 01910.Na), a multi-kinase inhibitor is selectively cytotoxic for DLBCL and induces more hyperphosphorylation and sumoylation of RanGAP1 in DLBCL cells than in non-neoplastic lymphoblastoid cell line (LCL). Sumoylation is linked to nucleocytoplasmic transport and transcriptional gene repression. The exact mechanism of rigosertib-induced cell death in DLBCL remains unclear. Our aim was to analyze the efficacy of rigosertib against DLBCL cells in vitro and in vivo and its molecular effects on tumor biology. First, LCL and DLBCL cells were treated with rigosertib and their viabilities were assessed by the MTT assay. We found that rigosertib was selectively cytotoxic and had potential for targeting DLBCL. Interestingly, rigosertib inhibited nuclear entry of sumoylated proteins RanGAP1, TRAF6 and C-Myb that was confirmed by immunofluoresence. Moreover, co-immunoprecipitation identified that rigosertib sequestered c-Myb and TRAF6 in the cytoplasm by stimulating their sumoylation through the RanGAP1*SUMO1*Ubc9 pathway. Specific knockdown of C-Myb and TRAF6 induced apoptosis and cell cycle arrest. Xenograft mice bearing lymphoma cells also exhibited effective tumor regression on rigosertib treatment. Thus, suppression of c-Myb and TRAF6 activity may be the potential therapeutic targets in DLBCL. These data support the clinical development of rigosertib in DLBCL.

    Abstract ii 中文摘要 iv 誌謝 v Abbreviations 1 Introduction 2 Diffuse large B-cell lymphoma (DLBCL) 2 Treatment of DLBCL 3 Study of rigosertib (ON 01910.Na) in cancers 5 Mechanisms of Rigosertib (ON 01910.Na) for cancer therapy 6 Materials and Methods 9 Culturing DLBCL and B-lymphoblastoid cell lines 9 Assessment of rigosertib (ON 01910.Na) cytotoxic effects on DLBCL and B-LCL 9 Subcellular fractionation of DLBCL and LCL 10 Co-immunoprecipitation 10 Immunoblotting assay 11 Immunofluorescence (IF) staining 11 Transfecting C-Myb and TRAF6-specific shRNA into DLBCL cell lines 12 Immunohistochemistry (IHC) staining 12 Cell death and cell cycle assays by flow cytometry 13 Xenograft mouse model of lymphoma 14 Statistical analysis 14 Results 16 Rigosertib (ON 01910.Na) induced more cell death in DLBCL cell lines (HT & SU-DHL5) but mild effects on non-neoplastic LCL 16 Rigosertib induced hyperphosphorylation of RanGAP1 with increased expression of RanGAP1*SUMO1 but decreased expression of TRAF6 and c-Myb in DLBCL cell lines 16 Expression of SUMO1-modified RanGAP1 / TRAF6 / c-Myb was suppressed in nucleus but accumulated in cytoplasm after ON 01910.Na treatment 16 RanGAP1*SUMO1*Ubc9 complex promoted accumulation of sumoylated c-Myb/TRAF6 complex in cytoplasm by ON 01910.Na treatment 17 C-Myb or TRAF6 depletion caused cell cycle arrest at the G0/G1 phase and cell death 17 ON 01910.Na effectively reduced the tumor growth in DLBCL-bearing NOD/SCID mice 18 Discussion 19 References 23 Figures and Tables 28 Figure 1. ON 01910.Na induces more cell death in DLBCL cell lines (HT&SU-DHL5). 28 Figure 2. ON 01910.Na induces hyperphosphorylation of RanGAP1 with increased expression of RanGAP1*SUMO1 but decreased expression of TRAF6 and C-myb at higher dosage. 30 Figure 3. Expression of sumoylated RanGAP1, TRAF6 and C-myb is decreased in nucleus but increased in cytoplasm after ON 01910.Na treatment. 32 Figure 4. Immunofluorescence staining reveals that RanGAP1, TRAF6 and C-myb are co-localized. Besides, the expression of RanGAP1, TRAF6 and C-myb modified with SUMO1 is decreased in nucleus and retained in cytoplasm at 0.5 μM of ON 01910.Na. 36 Figure 5. Immunoblotting analysis of c-Myb and its interaction with Ubc9 and TRAF6 modified by SUMO1 in DLBCL cells. 40 Figure 6. Knockdown of C-myb reduces viability, induces apoptosis and causes the cell cycle arrest in the G0/G1 phase in DLBCL (HT & SU-DHL5) cells. 42 Figure 7. Depletion of TRAF6 induces DLBCL (HT & SU-DHL5) cell apoptosis. 44 Figure 8. ON 01910.Na effectively reduces the tumor growth in lymphoma bearing NOD/SCID mice. 45 Figure 9. Hypothetical model for the regulatory mechanism of cell death by rigosertib in DLBCL (modified from ref (39)). 46 Table1 Antibodies of immunoblot 47 Table2 ShRNA clones from RNAi core 48 Table3 Characterization of DLBCL cell lines from DSMZ 49 Appendix 50 Appendix 1. 50 Appendix 2-1. 51 Appendix 2-2. 51 Appendix 3. 52 Appendix 4-1. 53 Appendix 4-2. 53

    Agoni, L., Basu, I., Gupta, S., Alfieri, A., Gambino, A., Goldberg, G. L., . . . Guha, C. (2014). Rigosertib is a more effective radiosensitizer than cisplatin in concurrent chemoradiation treatment of cervical carcinoma, in vitro and in vivo. Int J Radiat Oncol Biol Phys, 88(5), 1180-1187. doi: 10.1016/j.ijrobp.2013.12.051
    Athar, S., Siddiqui, N., Rai, S. R., Muzaffar, N., & Hameed, A. (2015). Impact of Rituximab and IPI on survival in diffuse large B cell Lymphoma patients treated at a tertiary level cancer centre in Pakistan: a single-centre experience. J Pak Med Assoc, 65(2), 170-174.
    Baris, D., & Zahm, S. H. (2000). Epidemiology of lymphomas. Curr Opin Oncol, 12(5), 383-394.
    Baron, B. W., Anastasi, J., Bies, J., Reddy, P. L., Joseph, L., Thirman, M. J., . . . Baron, J. M. (2014). GFI1B, EVI5, MYB--additional genes that cooperate with the human BCL6 gene to promote the development of lymphomas. Blood Cells Mol Dis, 52(1), 68-75. doi: 10.1016/j.bcmd.2013.07.003
    Bowles, D. W., Diamond, J. R., Lam, E. T., Weekes, C. D., Astling, D. P., Anderson, R. T., . . . Jimeno, A. (2014). Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies. Clin Cancer Res, 20(6), 1656-1665. doi: 10.1158/1078-0432.CCR-13-2506
    Briones, J. (2009). Emerging therapies for B-cell non-Hodgkin lymphoma. Expert Rev Anticancer Ther, 9(9), 1305-1316. doi: 10.1586/era.09.86
    Chang, K. C., Chang, W. C., Chang, Y., Hung, L. Y., Lai, C. H., Yeh, Y. M., . . . Chen, C. H. (2013). Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma. PLoS One, 8(11), e79863. doi: 10.1371/journal.pone.0079863
    Chang, K. C., Chang, Y., Jones, D., & Su, I. J. (2009). Aberrant expression of cyclin a correlates with morphogenesis of reed-sternberg cells in Hodgkin lymphoma. Am J Clin Pathol, 132(1), 50-59. doi: 10.1309/AJCPBDFR5L5UOAUZ
    Chang, K. C., Huang, G. C., Jones, D., Tsao, C. J., Lee, J. Y., & Su, I. J. (2004). Distribution and prognosis of WHO lymphoma subtypes in Taiwan reveals a low incidence of germinal-center derived tumors. Leuk Lymphoma, 45(7), 1375-1384.
    Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y., & Tsai, C. H. (1999). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol, 73(10), 8857-8866.
    Chapman, C. M., Sun, X., Roschewski, M., Aue, G., Farooqui, M., Stennett, L., . . . Wiestner, A. (2012). ON 01910.Na is selectively cytotoxic for chronic lymphocytic leukemia cells through a dual mechanism of action involving PI3K/AKT inhibition and induction of oxidative stress. Clin Cancer Res, 18(7), 1979-1991. doi: 10.1158/1078-0432.CCR-11-2113
    Chen, C. J., You, S. L., Lin, L. H., Hsu, W. L., & Yang, Y. W. (2002). Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol, 32 Suppl, S66-81.
    Chenevix-Trench, G., Kerr, B., & Walters, M. (1990). Lymphoblastoid cell lines from frozen whole blood: a quick and economical safeguard for linkage analysis. Am J Hum Genet, 46(3), 635-636.
    Cimino, J. J., & Ayres, E. J. (2010). The clinical research data repository of the US National Institutes of Health. Stud Health Technol Inform, 160(Pt 2), 1299-1303.
    Coiffier, B., Lepage, E., Briere, J., Herbrecht, R., Tilly, H., Bouabdallah, R., . . . Gisselbrecht, C. (2002). CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med, 346(4), 235-242. doi: 10.1056/NEJMoa011795
    Corless, C. L., Fletcher, J. A., & Heinrich, M. C. (2004). Biology of gastrointestinal stromal tumors. Journal of Clinical Oncology, 22(18), 3813-3825.
    Emambokus, N., Vegiopoulos, A., Harman, B., Jenkinson, E., Anderson, G., & Frampton, J. (2003). Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J, 22(17), 4478-4488. doi: 10.1093/emboj/cdg434
    Fan, A. C., O'Rourke, J. J., Praharaj, D. R., & Felsher, D. W. (2013). Real-time nanoscale proteomic analysis of the novel multi-kinase pathway inhibitor rigosertib to measure the response to treatment of cancer. Expert Opin Investig Drugs, 22(11), 1495-1509. doi: 10.1517/13543784.2013.829453
    Fang, J., Rhyasen, G., Bolanos, L., Rasch, C., Varney, M., Wunderlich, M., . . . Starczynowski, D. T. (2012). Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood, 120(4), 858-867. doi: 10.1182/blood-2012-02-407999
    Fisher, S. G., & Fisher, R. I. (2004). The epidemiology of non-Hodgkin's lymphoma. Oncogene, 23(38), 6524-6534. doi: 10.1038/sj.onc.1207843
    Friedberg, J. W. (2011). Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program, 2011, 498-505. doi: 10.1182/asheducation-2011.1.498
    Friedberg, J. W., & Fisher, R. I. (2008). Diffuse large B-cell lymphoma. Hematol Oncol Clin North Am, 22(5), 941-952, ix. doi: 10.1016/j.hoc.2008.07.002
    Gill, G. (2005). Something about SUMO inhibits transcription. Curr Opin Genet Dev, 15(5), 536-541. doi: 10.1016/j.gde.2005.07.004
    Gonda, T. J., Favier, D., Ferrao, P., Macmillan, E. M., Simpson, R., & Tavner, F. (1996). The c-myb negative regulatory domain. Curr Top Microbiol Immunol, 211, 99-109.
    Gumireddy, K., Reddy, M. V., Cosenza, S. C., Boominathan, R., Baker, S. J., Papathi, N., . . . Reddy, E. P. (2005). ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell, 7(3), 275-286. doi: 10.1016/j.ccr.2005.02.009
    Hyoda, T., Tsujioka, T., Nakahara, T., Suemori, S., Okamoto, S., Kataoka, M., & Tohyama, K. (2015). Rigosertib induces cell death of a myelodysplastic syndrome-derived cell line by DNA damage-induced G2/M arrest. Cancer Sci, 106(3), 287-293. doi: 10.1111/cas.12605
    Inoue, J., Gohda, J., Akiyama, T., & Semba, K. (2007). NF-kappaB activation in development and progression of cancer. Cancer Sci, 98(3), 268-274. doi: 10.1111/j.1349-7006.2007.00389.x
    Jie, H., Donghua, H., Xingkui, X., Liang, G., Wenjun, W., Xiaoyan, H., & Zhen, C. (2007). Homoharringtonine-induced apoptosis of MDS cell line MUTZ-1 cells is mediated by the endoplasmic reticulum stress pathway. Leuk Lymphoma, 48(5), 964-977. doi: 10.1080/10428190701216360
    Jimeno, A., Li, J., Messersmith, W. A., Laheru, D., Rudek, M. A., Maniar, M., . . . Donehower, R. C. (2008). Phase I study of ON 01910.Na, a novel modulator of the Polo-like kinase 1 pathway, in adult patients with solid tumors. J Clin Oncol, 26(34), 5504-5510. doi: 10.1200/JCO.2008.17.9788
    Kaneko, N., Mitsuoka, K., Amino, N., Yamanaka, K., Kita, A., Mori, M., . . . Kuromitsu, S. (2014). Combination of YM155, a survivin suppressant, with bendamustine and rituximab: a new combination therapy to treat relapsed/refractory diffuse large B-cell lymphoma. Clin Cancer Res, 20(7), 1814-1822. doi: 10.1158/1078-0432.CCR-13-2707
    Komrokji, R. S., Raza, A., Lancet, J. E., Ren, C., Taft, D., Maniar, M., . . . List, A. F. (2013). Phase I clinical trial of oral rigosertib in patients with myelodysplastic syndromes. Br J Haematol, 162(4), 517-524. doi: 10.1111/bjh.12436
    Liu, H., Tamashiro, S., Baritaki, S., Penichet, M., Yu, Y., Chen, H., . . . Bonavida, B. (2012). TRAF6 activation in multiple myeloma: a potential therapeutic target. Clin Lymphoma Myeloma Leuk, 12(3), 155-163. doi: 10.1016/j.clml.2012.01.006
    Ma, W. W., Messersmith, W. A., Dy, G. K., Weekes, C. D., Whitworth, A., Ren, C., . . . Jimeno, A. (2012). Phase I study of Rigosertib, an inhibitor of the phosphatidylinositol 3-kinase and Polo-like kinase 1 pathways, combined with gemcitabine in patients with solid tumors and pancreatic cancer. Clin Cancer Res, 18(7), 2048-2055. doi: 10.1158/1078-0432.CCR-11-2813
    Meng, Q., Zheng, M., Liu, H., Song, C., Zhang, W., Yan, J., . . . Liu, X. (2012). TRAF6 regulates proliferation, apoptosis, and invasion of osteosarcoma cell. Mol Cell Biochem, 371(1-2), 177-186. doi: 10.1007/s11010-012-1434-4
    Miettinen, M., & Lasota, J. (2003). Gastrointestinal stromal tumors (GISTs): definition, occurrence, pathology, differential diagnosis and molecular genetics. Pol J Pathol, 54(1), 3-24.
    Morita, Y., Kanei-Ishii, C., Nomura, T., & Ishii, S. (2005). TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell, 16(11), 5433-5444. doi: 10.1091/mbc.E05-08-0731
    Nicolaides, N. C., Gualdi, R., Casadevall, C., Manzella, L., & Calabretta, B. (1991). Positive autoregulation of c-myb expression via Myb binding sites in the 5' flanking region of the human c-myb gene. Mol Cell Biol, 11(12), 6166-6176.
    Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F., & Riccardi, C. (1991). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods, 139(2), 271-279.
    Ohnuma, T., Lehrer, D., Ren, C., Cho, S. Y., Maniar, M., Silverman, L., . . . Holland, J. F. (2013). Phase 1 study of intravenous rigosertib (ON 01910.Na), a novel benzyl styryl sulfone structure producing G2/M arrest and apoptosis, in adult patients with advanced cancer. Am J Cancer Res, 3(3), 323-338.
    Oussenko, I. A., Holland, J. F., Reddy, E. P., & Ohnuma, T. (2011). Effect of ON 01910.Na, an anticancer mitotic inhibitor, on cell-cycle progression correlates with RanGAP1 hyperphosphorylation. Cancer Res, 71(14), 4968-4976. doi: 10.1158/0008-5472.CAN-10-1603
    Oyama, T., Ichimura, K., Suzuki, R., Suzumiya, J., Ohshima, K., Yatabe, Y., . . . Nakamura, S. (2003). Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol, 27(1), 16-26.
    Paik, J. H., Jang, J. Y., Jeon, Y. K., Kim, W. Y., Kim, T. M., Heo, D. S., & Kim, C. W. (2011). MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res, 17(14), 4761-4771. doi: 10.1158/1078-0432.CCR-11-0494
    Pattabiraman, D. R., & Gonda, T. J. (2013). Role and potential for therapeutic targeting of MYB in leukemia. Leukemia, 27(2), 269-277. doi: 10.1038/leu.2012.225
    Pham, L. V., Zhou, H. J., Lin-Lee, Y. C., Tamayo, A. T., Yoshimura, L. C., Fu, L., . . . Ford, R. J. (2008). Nuclear tumor necrosis factor receptor-associated factor 6 in lymphoid cells negatively regulates c-Myb-mediated transactivation through small ubiquitin-related modifier-1 modification. J Biol Chem, 283(8), 5081-5089. doi: 10.1074/jbc.M706307200
    Prasad, A., Park, I. W., Allen, H., Zhang, X., Reddy, M. V., Boominathan, R., . . . Groopman, J. E. (2009). Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene, 28(12), 1518-1528. doi: 10.1038/onc.2008.502
    Preda, A., Ohnuma, T., Jiang, J.-D., Holland, J. F., & Reddy, E. P. (2006). Cross-resistance to ON01910. Na among drug-resistant human tumor cell lines. Cancer Research, 66(8 Supplement), 1106-1106.
    Quintas-Cardama, A., Wierda, W., & O'Brien, S. (2010). Investigational immunotherapeutics for B-cell malignancies. J Clin Oncol, 28(5), 884-892. doi: 10.1200/JCO.2009.22.8254
    Ramsay, R. G., & Gonda, T. J. (2008). MYB function in normal and cancer cells. Nat Rev Cancer, 8(7), 523-534. doi: 10.1038/nrc2439
    Reddy, M. V., Mallireddigari, M. R., Cosenza, S. C., Pallela, V. R., Iqbal, N. M., Robell, K. A., . . . Reddy, E. P. (2008). Design, synthesis, and biological evaluation of (E)-styrylbenzylsulfones as novel anticancer agents. J Med Chem, 51(1), 86-100. doi: 10.1021/jm701077b
    Reeder, C. B., & Ansell, S. M. (2011). Novel therapeutic agents for B-cell lymphoma: developing rational combinations. Blood, 117(5), 1453-1462. doi: 10.1182/blood-2010-06-255067
    Roschewski, M., Dunleavy, K., & Wilson, W. H. (2012). Diffuse large B cell lymphoma: molecular targeted therapy. Int J Hematol, 96(5), 552-561. doi: 10.1007/s12185-012-1198-3
    Roschewski, M., Farooqui, M., Aue, G., Wilhelm, F., & Wiestner, A. (2013). Phase I study of ON 01910.Na (Rigosertib), a multikinase PI3K inhibitor in relapsed/refractory B-cell malignancies. Leukemia, 27(9), 1920-1923. doi: 10.1038/leu.2013.79
    Roschewski, M., Staudt, L. M., & Wilson, W. H. (2014). Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat Rev Clin Oncol, 11(1), 12-23. doi: 10.1038/nrclinonc.2013.197
    Sarvaiya, P. J., Schwartz, J. R., Hernandez, C. P., Rodriguez, P. C., & Vedeckis, W. V. (2012). Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. Am J Hematol, 87(10), 969-976. doi: 10.1002/ajh.23283
    Seetharam, M., Fan, A. C., Tran, M., Xu, L., Renschler, J. P., Felsher, D. W., . . . Greenberg, P. L. (2012). Treatment of higher risk myelodysplastic syndrome patients unresponsive to hypomethylating agents with ON 01910.Na. Leuk Res, 36(1), 98-103. doi: 10.1016/j.leukres.2011.08.022
    Silverman, L. R., Greenberg, P., Raza, A., Olnes, M. J., Holland, J. F., Reddy, P., . . . Wilhelm, F. (2014). Clinical activity and safety of the dual pathway inhibitor rigosertib for higher risk myelodysplastic syndromes following DNA methyltransferase inhibitor therapy. Hematol Oncol. doi: 10.1002/hon.2137
    Simbulan-Rosenthal, C. M., Rosenthal, D. S., Iyer, S., Boulares, A. H., & Smulson, M. E. (1998). Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem, 273(22), 13703-13712.
    Streubel, G., Bouchard, C., Berberich, H., Zeller, M. S., Teichmann, S., Adamkiewicz, J., Bauer, U. M. (2013). PRMT4 is a novel coactivator of c-Myb-dependent transcription in haematopoietic cell lines. PLoS Genet, 9(3), e1003343. doi: 10.1371/journal.pgen.1003343
    Sun, H., Li, X. B., Meng, Y., Fan, L., Li, M., & Fang, J. (2013). TRAF6 upregulates expression of HIF-1alpha and promotes tumor angiogenesis. Cancer Res, 73(15), 4950-4959. doi: 10.1158/0008-5472.can-13-0370
    Swerdlow, S. H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., Vardiman, J.W. (2008). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (4th Edition ed. Vol. 2). Lyon: IARC.
    Thomas, M. D., Kremer, C. S., Ravichandran, K. S., Rajewsky, K., & Bender, T. P. (2005). c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity, 23(3), 275-286. doi: 10.1016/j.immuni.2005.08.005
    Tilly, H., Vitolo, U., Walewski, J., da Silva, M. G., Shpilberg, O., Andre, M., . . . Group, E. G. W. (2012). Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 23 Suppl 7, vii78-82. doi: 10.1093/annonc/mds273
    Tseng, C. H. (2012). Diabetes, insulin use, and non-Hodgkin lymphoma mortality in Taiwan. Metabolism, 61(7), 1003-1009. doi: 10.1016/j.metabol.2011.11.015
    Van Vlierberghe, P., & Ferrando, A. (2012). The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest, 122(10), 3398-3406. doi: 10.1172/JCI61269
    Werner, A., Flotho, A., & Melchior, F. (2012). The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell, 46(3), 287-298. doi: 10.1016/j.molcel.2012.02.017
    Xu, F., He, Q., Li, X., Chang, C. K., Wu, L. Y., Zhang, Z., . . . Zhou, L. (2014). Rigosertib as a selective anti-tumor agent can ameliorate multiple dysregulated signaling transduction pathways in high-grade myelodysplastic syndrome. Sci Rep, 4, 7310. doi: 10.1038/srep07310
    Zhong, L., Cao, F., & You, Q. (2013). Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell. Tumour Biol, 34(1), 231-239. doi: 10.1007/s13277-012-0543-8

    無法下載圖示 校內:2020-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE