簡易檢索 / 詳目顯示

研究生: 田森貿
Tien, Sen-Mao
論文名稱: 評估抗登革病毒非結構性蛋白1的人源化抗體的治療效果
Evaluation of the therapeutic efficacy provided by humanized antibody against dengue virus nonstructural protein 1
指導教授: 林以行
Lin, Yee-Shin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 80
中文關鍵詞: 登革病毒非結構性蛋白1治療性單株抗體人源化單株抗體
外文關鍵詞: dengue virus, nonstructural protein 1, therapeutic monoclonal antibody, humanized monoclonal antibody
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著全球暖化趨勢,登革熱成為全球重要傳染病之一。登革病人會出現許多症狀,輕微者出現紅疹和發燒等病癥,嚴重者可能會有危及生命的登革出血熱。登革是由登革病毒 (dengue virus) 所引起之症狀,登革病毒屬於黃熱病毒科,黃熱病毒屬。已知登革病毒的非結構性蛋白1 (NS1) 會引起促發炎細胞激素與血管通透性的增加,造成血管滲漏。宿主也會因NS1的分子擬態理論 (molecular mimicry) 導致內皮細胞、血小板受損以及功能不良。至今臨床上針對登革患者仍缺乏理想的抗登革病毒藥物。然而,越來越多研究開始重視治療型抗體 (therapeutic antibody),例如抗NS1的抗體可以維持內皮細胞完整性及透過誘導補體介導的細胞毒殺作用 (CDC) 殺死被登革病毒感染的細胞。我們研究團隊先前篩選得到不會辨識至具交叉反應的抗原決定位,但皆能夠在體內及體外試驗提供對抗四型登革病毒感染保護力的鼠源單株抗體2E8及33D2。在小鼠動物模式中也證實被動給予鼠源單株抗體2E8和33D2,在不同血清型登革病毒感染情況下,都能提供治療效果。為了把過去的研究成果應用至臨床前試驗甚至臨床上,我們已針對降低原鼠源抗體的免疫原性 (immunogenicity),完成抗體的人源化。首先,我們利用酵素免疫分析法、分光光度法以及膠體電泳分析,發現人源化單株抗體2E8和33D2在人體體溫攝氏37度中都非常穩定。接著,我們進一步證實對抗NS1的人源化抗體,並無抗體依賴性免疫加強反應 (ADE) 存在的風險。除此之外,我們也發現它們對於目標抗原NS1的結合能力不遜於鼠源抗體,亦能辨認在分別感染四種血清型登革病毒的細胞表面上所呈現的NS1。確認抗體能辨認細胞表面的NS1後,我們進行CDC試驗發現,人源化單株抗體2E8和33D2都能誘導CDC對抗登革病毒感染。為了評估人源化單株抗體的治療效果,我們使用可以表現出血症狀的登革病毒感染動物模式,並證實在感染後一天施打較高劑量人源化抗體2E8與33D2都能減緩包含局部皮下出血以及出血時間延長等登革病徵,而低劑量的人源化抗體33D2亦能提供相同的治療功效。總結,在這個研究中,我們證實抗NS1的人源化單株抗體在登革病毒感染下亦能提供良好的治療效果,且具有發展成治療性抗體藥物的發展潛力。

    Recently, along with global warming, dengue becomes major threat to global public health. Dengue virus (DENV) belongs to the genus Flavivirus, family Flaviviridae and causes many symptoms including life-threatening dengue hemorrhagic fever. It has been known that DENV nonstructural protein 1 (NS1) could induce elevation of proinflammatory cytokines and vascular leakage. In addition, DENV NS1 may result in several responses such as endothelial cell damage and platelet dysfunction due to molecular mimicry. To date, there is no specific treatment for DENV infection; however, more and more studies have shown that therapeutic antibody (Ab) such as anti-DENV NS1 Ab can block the disruption of endothelial integrity and trigger complement-dependent cytotoxicity (CDC) to kill DENV-infected cells in vitro. Our previous studies demonstrated that anti-NS1 monoclonal antibody (mAb) can bind to DENV NS1 expressed on cell surface and induce CDC. Besides, passive transfer of mouse anti-NS1 mAbs 2E8 and 33D2 protected mice from all four serotypes of DENV challenge. However, the antigenicity of murine Ab causes a concern in human use. The anti-NS1 humanized mAbs, 2E8 and 33D2, are therefore generated and examined. Our results showed that the humanized mAbs have similar binding ability to NS1 as that of mouse mAbs and can recognize NS1 on the surface of cells infected by four different serotypes of DENV, respectively. Because these mAbs would be inoculated into human body, the stability of humanized mAbs at 37°C was analyzed by ELISA, spectrophotometer (Nanodrop 2000), and SDS-PAGE. The data indicated that the humanized Abs all have good stability. Furthermore, we confirmed that these two humanized mAbs do not have risk of Ab-dependent enhancement. After determining the surface NS1 binding activity, we examined whether anti-NS1 humanized mAbs cause a similar effect as murine mAbs, and the data showed that both humanized mAb 2E8 and 33D2 can elicit CDC of DENV (1-4)-infected cells. Importantly, we also evaluated the therapeutic efficacy attributed by humanized mAbs against DENV infection in vivo. Transfer of humanized mAbs 2E8 or 33D2 24 h after DENV infection both demonstrated therapeutic effects in STAT1-/- mice. Humanized mAb 33D2 has better therapeutic efficacy than mAb 2E8 since the in vivo results showed that lower-dose administration of mAb 33D2 can reduce DENV-induced skin hemorrhage and prolonged bleeding time. Collectively, the results from this study reveal a lead candidate of humanized anti-NS1 mAb that can act as a potential agent for anti-DENV therapy in the future.

    中文摘要 I Abstract III Acknowledgement V Contents VI Table and Figure List IX Abbreviations XI Introduction 1 I. Background information about dengue 1 II. Epidemiology of dengue 1 III. Clinical manifestations of dengue disease 2 IV. Characteristics of DENV 3 i. The structural proteins (C, prM and E) 3 ii. The nonstructural proteins (NS1-NS5) 5 V. The pathogenesis of DENV infection 7 i. Antibody responses to DENV 7 ii. Pathogenic factors of vascular leakage in dengue pathogenesis 8 iii. Contribution of the NS1 protein to vascular leakage 9 VI. DENV NS1 as a therapeutic target 10 i. Current status of dengue treatment 11 ii. Anti-NS1 Ab can be a potential therapy 11 VII. Therapeutic effect of anti-NS1 Abs 13 i. Candidates of anti-NS1 Abs for therapeutic application 13 ii. Differences among mouse, chimeric, and humanized Abs 14 VIII. Humanization process 15 i. Framework-homology-based humanization 15 ii. CDR grafting 16 iii. Humanization of anti-NS1 mAbs 2E8 and 33D2 16 Specific aims 18 1. Evaluation of the humanized Abs 2E8 and 33D2 for their therapeutic efficacy in vitro 18 2. Evaluation of the humanized Abs 2E8 and 33D2 for their therapeutic efficacy in vivo 18 Materials and Methods 20 A. Materials 20 A-1 Mice 20 A-2 Cell lines 20 A-3 Virus preparation and virus titration 20 A-4 Preparation of antibodies 21 A-5 Drugs and reagents 21 A-6 Antibodies 22 A-7 Kits 23 A-8 Consumables 23 A-9 Instruments 24 B. Methods 25 B-1 Cell cultures 25 B-2 Virus cultures 26 B-3 Plaque forming assay 26 B-4 Binding ability of Abs to NS1 determined by ELISA 26 B-5 Gel electrophoresis 27 B-6 Infection of endothelial cells with DENV 27 B-7 Flow cytometry 27 B-8 Lactate dehydrogenase-based complement dependent cytolysis assay 28 B-9 Infection mouse model 28 B-10 Passive immunization mouse model 29 B-11 Mouse tail bleeding time 29 B-12 NS1 quantitative ELISA 29 B-13 Fluorescent focus assay (FFA) 30 B-14 Hemorrhage quantification 30 B-15 Indirect fluorescent assay (IFA) 30 B-16 Statistical analysis 31 Results 32 I Passive transfer with lower dose mouse mAbs 2E8 or 33D2 can alleviate prolonged bleeding time in DENV-infected mice 32 II The binding ability of humanized mAb 2E8 candidates to full length NS1 ………………………………………………………………………………..32 III The surface NS1 binding activity of humanized mAb 2E8 candidates 33 IV The humanized mAbs 2E8 and 33D2 do not be recognized by anti-mouse IgG 33 V Stabilities of different humanized Abs 2E8 and 33D2 at 37˚C 34 VI Humanized Abs 2E8 and 33D2 do not cause ADE 35 VII Binding ability of humanized Abs 2E8 and 33D2 to NS1 36 VIII Surface NS1 binding ability of humanized Ab for four serotypes of DENV-infected HMEC-1 cells 37 IX Humanized Abs 2E8 and 33D2 can recognize four DENV (1-4)-infected cells 37 X Humanized Abs 2E8 and 33D2 can induce CDC of DENV (1-4)-infected cells 37 XI Administration of humanized Abs 2E8 and 33D2 reduces DENV-induced skin hemorrhage and shortens DENV-induced prolonged bleeding time 38 XII Summary and comparison of humanized Ab candidates 39 Discussion 40 Conclusion 48 References 49 Table and Figures 59 Appendix 73

    Akey, D. L., Brown, W. C., Dutta, S., Konwerski, J., Jose, J., Jurkiw, T. J., et al. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343: 881-885 (2014).
    Alcalá, A. C., Medina, F., González-Robles, A., Salazar-Villatoro, L., Fragoso-Soriano, R. J., Vásquez, C., et al. The dengue virus non-structural protein 1 (NS1) is secreted efficiently from infected mosquito cells. Virology 488: 278-287 (2016).
    Alcon, S., Talarmin, A., Debruyne, M., Falconar, A., Deubel, V., and Flamand, M. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol 40: 376-381 (2002).
    Altmeyer, R. Virus attachment and entry offer numerous targets for antiviral therapy. Curr Pharm Des 10: 3701-3712 (2004).
    Ashour, J., Morrison, J., Laurent-Rolle, M., Belicha-Villanueva, A., Plumlee, C. R., Bernal-Rubio, D., et al. Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe 8: 410-421 (2010).
    Avirutnan, P., Hauhart, R. E., Marovich, M. A., Garred, P., Atkinson, J. P., and Diamond, M. S. Complement-mediated neutralization of dengue virus requires mannose-binding lectin. MBio 2: e00276-11 (2011).
    Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., Auethavornanan, K., et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 193: 1078-1088 (2006).
    Balsitis, S. J., Williams, K. L., Lachica, R., Flores, D., Kyle, J. L., Mehlhop, E., et al. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 6 e1000790 (2010).
    Beatty, P. R., Puerta-Guardo, H., Killingbeck, S. S., Glasner, D. R., Hopkins, K., and Harris, E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 7: 304ra141 (2015).
    Bethell, D. B., Flobbe, K., Cao, X. T., Day, N. P., Pham, T. P., Buurman, W. A., et al. Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J Infect Dis 177: 778-782 (1998).
    Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., et al. The global distribution and burden of dengue. Nature 496: 504-507 (2013).
    Bowers, P. M., Neben, T. Y., Tomlinson, G. L., Dalton, J. L., Altobell, L., Zhang, X., et al. Humanization of antibodies using heavy chain complementarity-determining region 3 grafting coupled with in vitro somatic hypermutation. J Biol Chem 288: 7688-7696 (2013).
    Bradbury, A. R. M., Trinklein, N. D., Thie, H., Wilkinson, I. C., Tandon, A. K., Anderson, S., et al. When monoclonal antibodies are not monospecific: hybridomas frequently express additional functional variable regions. MAbs 10: 539-546 (2018).
    Bravo, L., Roque, V. G., Brett, J., Dizon, R., and L'Azou, M. Epidemiology of dengue disease in the Philippines (2000-2011): a systematic literature review. PLoS Negl Trop Dis 8: e3027 (2014).
    Budigi, Y., Ong, E. Z., Robinson, L. N., Ong, L. C., Rowley, K. J., Winnett, A., et al. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein. PLoS Negl Trop Dis 12: e0006209 (2018).
    Byk, L. A., and Gamarnik, A. V. Properties and Functions of the Dengue Virus Capsid Protein. Annu Rev Virol 3: 263-281 (2016).
    Chan, C. Y. Y., and Ooi, E. E. Dengue: an update on treatment options. Future Microbiol 10: 2017-2031 (2015).
    Chen, H. R., Lai, Y. C., and Yeh, T. M. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 25: 58 (2018).
    Chen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D., and Wu-Hsieh, B. A. Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81: 5518-5526 (2007).
    Chen, H. R., Chao, C. H., Liu, C. C., Ho, T. S., Tsai, H. P., Perng, G. C., et al. Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog 14: e1007033 (2018).
    Chen, H. R., Chuang, Y. C., Lin, Y. S., Liu, H. S., Liu, C. C., Perng, G. C., et al. Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLoS Negl Trop Dis 10: e0004828 (2016).
    Chen, W. J. Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: a 20-year epidemiological analysis. Biomed J 41: 283-289 (2018).
    Chen, Y., Pan, Y., Guo, Y., Qiu, L., Ding, X., and Che, X. Comprehensive mapping of immunodominant and conserved serotype- and group-specific B-cell epitopes of nonstructural protein 1 from dengue virus type 1. Virology 398: 290-298 (2010).
    Cheng, H. J., Lin, C. F., Lei, H. Y., Liu, H. S., Yeh, T. M., Luo, Y. H., et al. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies. Exp Biol Med 234: 63-73 (2009).
    Chuang, Y. C., Lin, J., Lin, Y. S., Wang, S., and Yeh, T. M. Dengue Virus Nonstructural protein 1–induced antibodies cross-react with human plasminogen and enhance its activation. J Immunol 196, 1218-1226 (2016).
    Chuang, Y. C., Lin, Y. S., Liu, H. S., and Yeh, T. M. Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J Virol 88: 13759-13768 (2014).
    Chuang, Y. C., Wang, S. Y., Lin, Y. S., Chen, H. R., and Yeh, T. M. Re-evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. J Biomed Sci 20: 42 (2013).
    Clavero-Álvarez, A., Di Mambro, T., Perez-Gaviro, S., Magnani, M., and Bruscolini, P. Humanization of antibodies using a statistical inference approach. Sci Rep 8: 14820 (2018).
    Conde, J. N., Silva, E. M., Barbosa, A. S., and Mohana-Borges, R. The complement system in flavivirus infections. Front Microbiol 8: 213 (2017).
    de Azeredo, E. L., Monteiro, R. Q., and de-Oliveira Pinto, L. M. Thrombocytopenia in dengue: interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators Inflamm 2015: 313842 (2015).
    De La Guardia, C., and Lleonart, R. Progress in the identification of dengue virus entry/fusion inhibitors. Biomed Res Int 2014: 825039 (2014).
    Dighe, S. N., Ekwudu, O., Dua, K., Chellappan, D. K., Katavic, P. L., and Collet, T. A. Recent update on anti-dengue drug discovery. Eur J Med Chem 176: 431-455 (2019).
    Duvall, M., Bradley, N., and Fiorini, R. N. A novel platform to produce human monoclonal antibodies: the next generation of therapeutic human monoclonal antibodies discovery. MAbs 3: 203-208 (2011).
    Edeling, M. A., Diamond, M. S., and Fremont, D. H. Structural basis of flavivirus NS1 assembly and antibody recognition. Proc Natl Acad Sci U S A 111: 4285-4290 (2014).
    Endy, T. P., Nisalak, A., Chunsuttitwat, S., Vaughn, D. W., Green, S., Ennis, F. A., et al. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis 189: 990-1000 (2004).
    Ferguson, N. M., Rodríguez-Barraquer, I., Dorigatti, I., Mier-Y-Teran-Romero, L., Laydon, D. J., and Cummings, D. A. T. Benefits and risks of the Sanofi-Pasteur dengue vaccine: modeling optimal deployment. Science 353: 1033-1036 (2016).
    Freire, J. M., Santos, N. C., Veiga, A. S., Da Poian, A. T., and Castanho, M. A. Rethinking the capsid proteins of enveloped viruses: multifunctionality from genome packaging to genome transfection. FEBS J 282: 2267-2278 (2015).
    Glasner, D. R., Ratnasiri, K., Puerta-Guardo, H., Espinosa, D. A., Beatty, P. R., and Harris, E. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog 13: e1006673 (2017).
    Guabiraba, R., and Ryffel, B. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141: 143-156 (2014).
    Gutsche, I., Coulibaly, F., Voss, J. E., Salmon, J., d'Alayer, J., Ermonval, M., et al. Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci U S A 108: 8003-8008 (2011).
    Guzman, M. G., and Harris, E. Dengue. Lancet 385: 453-465 (2015).
    Halstead, S., and O'Rourke, E. Dengue viruses and mononuclear phagocytes. I. infection enhancement by non-neutralizing antibody. J Exp Med 146: 201-217 (1977).
    Halstead, S. B. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine 35: 6355-6358 (2017).
    Halstead, S. B., Venkateshan, C. N., Gentry, M. K., and Larsen, L. K. Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J Immunol 132: 1529-1532 (1984).
    Harding, F. A., Stickler, M. M., Razo, J., and DuBridge, R. B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2: 256-265 (2010).
    Hertz, T., Beatty, P. R., MacMillen, Z., Killingbeck, S. S., Wang, C., and Harris, E. Antibody epitopes identified in critical regions of dengue virus nonstructural 1 protein in mouse vaccination and natural human infections. J Immunol 198: 4025-4035 (2017).
    Hsieh, S. C., Wu, Y. C., Zou, G., Nerurkar, V. R., Shi, P. Y., and Wang, W. K. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. J Biol Chem 289: 33149-33160 (2014).
    Huang, Y. H., Liu, C. C., Wang, S. T., Lei, H. Y., Liu, H. L., Lin, Y. S., et al. Activation of coagulation and fibrinolysis during dengue virus infection. J Med Virol 63: 247-251 (2001).
    Jacobs, M. G., Robinson, P. J., Bletchly, C., Mackenzie, J. M., and Young, P. R. Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB J 14: 1603-1610 (2000).
    Jegaskanda, S., Weinfurter, J. T., Friedrich, T. C., and Kent, S. J. Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of Macaques. J Virol 87: 5512-5522 (2013).
    Kashmiri, S. V., De Pascalis, R., Gonzales, N. R., and Schlom, J. SDR grafting--a new approach to antibody humanization. Methods 36: 25-34 (2005).
    Kliks, S. C., Nimmanitya, S., Nisalak, A., and Burke, D. S. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38: 411-419 (1988).
    Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108: 717-725 (2002).
    Lai, Y. C., Chuang, Y. C., Liu, C. C., Ho, T. S., Lin, Y. S., Anderson, R., et al. Antibodies against modified NS1 wing domain peptide protect against dengue virus infection. Sci Rep 7: 6975 (2017).
    Li, P. C., Liao, M. Y., Cheng, P. C., Liang, J. J., Liu, I. J., Chiu, C. Y., et al. Development of a humanized antibody with high therapeutic potential against dengue virus type 2. PLoS Negl Trop Dis 6: e1636 (2012).
    Libraty, D. H., Young, P. R., Pickering, D., Endy, T. P., Kalayanarooj, S., Green, S., et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 186: 1165-1168 (2002).
    Lin, C. F., Chiu, S. C., Hsiao, Y. L., Wan, S. W., Lei, H. Y., Shiau, A. L., et al. Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J Immunol 174: 395-403 (2005).
    Lin, C. F., Wan, S. W., Chen, M. C., Lin, S. C., Cheng, C. C., Chiu, S. C., et al. Liver injury caused by antibodies against dengue virus nonstructural protein 1 in a murine model. Lab Invest 88: 1079-1089 (2008).
    Lonberg, N. Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol 69-97 (2008).
    Low, J. G. H., Ooi, E. E., and Vasudevan, S. G. Current status of dengue therapeutics research and development. J Infect Dis 215: S96-S102 (2017).
    Luo, D., Xu, T., Watson, R. P., Scherer-Becker, D., Sampath, A., Jahnke, W., et al. Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J 27: 3209-3219 (2008).
    Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J., and Post, C. B. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A 101: 3414-3419 (2004).
    Maeda, D. L. N. F., Batista, M. T., Pereira, L. R., de Jesus Cintra, M., Amorim, J. H., Mathias-Santos, C., et al. Adjuvant-mediated epitope specificity and enhanced neutralizing activity of antibodies targeting dengue virus envelope protein. Front Immunol 8: 1175 (2017).
    Marchi, R., Nagaswami, C., and Weisel, J. W. Fibrin formation and lysis studies in dengue virus infection. Blood Coagul Fibrinolysis 20: 575-582 (2009).
    Martina, B. E., Koraka, P., and Osterhaus, A. D. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22: 564-581 (2009).
    Masrinoul, P., Diata, M. O., Pambudi, S., Limkittikul, K., Ikuta, K., and Kurosu, T. Highly conserved region 141168 of the NS1 protein is a new common epitope region of dengue virus. Jpn J Infect Dis 64: 109-115 (2011).
    Metz, S. W., Thomas, A., White, L., Stoops, M., Corten, M., Hannemann, H., et al. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. J Virol 15: 60 (2018).
    Modhiran, N., Watterson, D., Muller, D. A., Panetta, A. K., Sester, D. P., Liu, L., et al. Dengue virus NS1 protein activates cells via toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 7: 304ra142 (2015).
    Modis, Y., Ogata, S., Clements, D., and Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100: 6986-6991 (2003).
    Mukhopadhyay, S., Kuhn, R. J., and Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3: 13-22 (2005).
    Nelson, A. D., Hoffmann, M. M., Parks, C. A., Dasari, S., Schrum, A. G., and Gil, D. IgG Fab fragments forming bivalent complexes by a conformational mechanism that is reversible by osmolytes. J Biol Chem 287: 42936-42950 (2012).
    Ng, J. K. W., Zhang, S. L., Tan, H. C., Yan, B., Martinez, J. M., Tan, W. Y., et al. First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies. PLoS Pathog 10: e1004031 (2014).
    Nguyen, N. M., Tran, C. N., Phung, L. K., Duong, K. T., Huynh Hle, A., Farrar, J., et al. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J Infect Dis 207: 1442-1450 (2013).
    Noisakran, S., Dechtawewat, T., Avirutnan, P., Kinoshita, T., Siripanyaphinyo, U., Puttikhunt, C., et al. Association of dengue virus NS1 protein with lipid rafts. J Gen Virol 89: 2492-2500 (2008).
    Omokoko, M. D., Pambudi, S., Phanthanawiboon, S., Masrinoul, P., Setthapramote, C., Sasaki, T., et al. A highly conserved region between amino acids 221 and 266 of dengue virus non-structural protein 1 is a major epitope region in infected patients. Am J Trop Med Hyg 91: 146-155 (2014).
    Ong, E. Z., Budigi, Y., Tan, H. C., Robinson, L. N., Rowley, K. J., Winnett, A., et al. Preclinical evaluation of VIS513, a therapeutic antibody against dengue virus, in non-human primates. Antiviral Res 144: 44-47 (2017).
    Perera, N., Miller, J. L., and Zitzmann, N. The role of the unfolded protein response in dengue virus pathogenesis. Cell Microbiol 19: e12734 (2017).
    Pinheiro, F. P., and Corber, S. J. Global situation of dengue and dengue haemorrhagic fever, and its emergence in the Americas. World Health Stat Q 50: 161-169 (1997).
    Poungpair, O., Bangphoomi, K., Chaowalit, P., Sawasdee, N., Saokaew, N., Choowongkomon, K., et al. Generation of human single-chain variable fragment antibodies specific to dengue virus non-structural protein 1 that interfere with the virus infectious cycle. MAbs 6: 474-482 (2014).
    Pryor, M. J., Rawlinson, S. M., Butcher, R. E., Barton, C. L., Waterhouse, T. A., Vasudevan, S. G., et al. Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic 8: 795-807 (2007).
    Puerta-Guardo, H., Glasner, D. R., and Harris, E. Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog 12: e1005738 (2016).
    Rastogi, M., Sharma, N., and Singh, S. K. Flavivirus NS1: a multifaceted enigmatic viral protein. J Virol 13: 131 (2016).
    Reitsma, S., Slaaf, D. W., Vink, H., van Zandvoort, M. A. M. J., and oude Egbrink, M. G. A. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454: 345-359 (2007).
    Robinson, L. N., Tharakaraman, K., Rowley, K. J., Costa, V. V., Chan, K. R., Wong, Y. H., et al. Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell 162: 493-504 (2015).
    Roehrig, J. T. Antigenic structure of flavivirus proteins. Adv Virus Res 59: 141-175 (2003).
    Rothman, A. L. Immunology and immunopathogenesis of dengue disease. Adv Virus Res 60: 397-419 (2003).
    Rothman, A. L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 11: 532-543 (2011).
    Safdari, Y., Farajnia, S., Asgharzadeh, M., & Khalili, M. Antibody humanization methods - a review and update. Biotechnol Genet Eng Rev 29: 175-186 (2013).
    Santos, M. L. d., Quintilio, W., Manieri, T. M., Tsuruta, L. R., and Moro, A. M. Advances and challenges in therapeutic monoclonal antibodies drug development. Brazi J Pharm Sci 54: e01007 (2018).
    Saxena, A., and Wu, D. Advances in therapeutic Fc engineering-modulation of IgG-associated effector functions and serum half-life. Front Immunol 7: 580-580 (2016).
    Screaton, G., Mongkolsapaya, J., Yacoub, S., and Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15: 745-759 (2015).
    Shafee, N., and AbuBakar, S. Dengue virus type 2 NS3 protease and NS2B-NS3 protease precursor induce apoptosis. J Gen Virol 84: 2191-2195 (2003).
    Shu, P. Y., Chen, L. K., Chang, S. F., Su, C. L., Chien, L. J., Chin, C., et al. Dengue virus serotyping based on envelope and membrane and nonstructural protein NS1 serotype-specific capture immunoglobulin M enzyme-linked immunosorbent assays. J Clin Microbiol, 42, 2489-2494 (2004).
    Simmons, C. P., Chau, T. N., Thuy, T. T., Tuan, N. M., Hoang, D. M., Thien, N. T., et al. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J Infect Dis 196: 416-424 (2007).
    Srikiatkhachorn, A., and Yoon, I. K. Immune correlates for dengue vaccine development. Expert Rev Vaccines 15: 455-465 (2016).
    Sukupolvi-Petty, S., Austin, S. K., Engle, M., Brien, J. D., Dowd, K. A., Williams, K. L., et al. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84: 9227-9239 (2010).
    Sun, P., Williams, M., Nagabhushana, N., Jani, V., Defang, G., and Morrison, B. J. NK cells activated through antibody-dependent cell cytotoxicity and armed with degranulation/IFN-γ production suppress antibody-dependent enhancement of dengue viral infection. Sci Rep 9: 1109 (2019).
    Tan, P., Mitchell, D. A., Buss, T. N., Holmes, M. A., Anasetti, C., and Foote, J. “Superhumanized” antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. J Immunol 169: 1119-1125 (2002).
    Tang, X. N., Berman, A. E., Swanson, R. A. and Yenari, M. A. Digitally quantifying cerebral hemorrhage using Photoshop and Image J. J Neurosci Methods 190: 240-243 (2010).
    Tang, Y. L., Liu, I. J., Li, P. C., Chiu, C. Y., Lin, C. Y., Huang, C. H., et al. Generation and characterization of antinonstructural protein 1 monoclonal antibodies and development of diagnostics for dengue virus serotype 2. Am J Trop Med Hyg 97: 1049-1061 (2017).
    Tay, M. Z., Wiehe, K., and Pollara, J. Antibody-dependent cellular phagocytosis in antiviral immune responses. Front Immunol 10: 332 (2019).
    Townsend, S., Fennell, B. J., Apgar, J. R., Lambert, M., McDonnell, B., Grant, J., et al. Augmented binary substitution: single-pass CDR germ-lining and stabilization of therapeutic antibodies. Proc Natl Acad Sci U S A 112: 15354-15359 (2015).
    Tricou, V., Minh, N. N., Van, T. P., Lee, S. J., Farrar, J., Wills, B., et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 4: e785 (2010).
    Tripathi, N. K., and Shrivastava, A. Recent developments in recombinant protein-based dengue vaccines. Front Immunol 9: 1919 (2018).
    Vaughn, D. W., Green, S., Kalayanarooj, S., Innis, B. L., Nimmannitya, S., Suntayakorn, S., et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181: 2-9 (2000).
    Vogt, M. R., Moesker, B., Goudsmit, J., Jongeneelen, M., Austin, S. K., Oliphant, T., et al. Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step. J Virol 83: 6494-6507 (2009).
    Wahala, W. M. P. B., and Silva, A. M. d. The human antibody response to dengue virus infection. Viruses 3: 2374-2395 (2011).
    Wan, S. W., Lu, Y. T., Huang, C. H., Lin, C. F., Anderson, R., Liu, H. S., et al. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One 9: e92495 (2014).
    Wan, S. W., Chen, P. W., Chen, C. Y., Lai, Y. C., Chu, Y. T., Hung, C. Y., et al. Therapeutic effects of monoclonal antibody against dengue virus NS1 in a STAT1 knockout mouse model of dengue infection. J Immunol 199: 2834-2844 (2017).
    Wang, S. F., Chang, K., Loh, E. W., Wang, W. H., Tseng, S. P., Lu, P. L., et al. Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg Microbes Infect 5: e123 (2016).
    Wang, W. K., Chao, D. Y., Kao, C. L., Wu, H. C., Liu, Y. C., Li, C. M., et al. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 305: 330-338 (2003).
    Wang, X., Mathieu, M., and Brezski, R. J. IgG Fc engineering to modulate antibody effector functions. Protein Cell 9: 63-73 (2018).
    Watanabe, S., Chan, K. W. K., Dow, G., Ooi, E. E., Low, J. G., and Vasudevan, S. G. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: the search for a window for potential therapeutic efficacy. Antiviral Res 127: 10-19 (2016).
    Whitehorn, J., and Simmons, C. P. The pathogenesis of dengue. Vaccine 29: 7221-7228 (2011).
    Wren, L. H., Chung, A. W., Isitman, G., Kelleher, A. D., Parsons, M. S., Amin, J., et al. Specific antibody-dependent cellular cytotoxicity responses associated with slow progression of HIV infection. Immunology 138: 116-123 (2013).
    Wu-Hsieh, B. A., Yen, Y. T., and Chen, H. C. Dengue hemorrhage in a mouse model. Ann N Y Acad Sci 1171 Suppl 1: E42-47 (2009).
    Xie, X., Zou, J., Puttikhunt, C., Yuan, Z., and Shi, P. Y. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J Virol 89: 1298-1313 (2015).
    Xu, M., Zuest, R., Velumani, S., Tukijan, F., Toh, Y. X., Appanna, R., et al. A potent neutralizing antibody with therapeutic potential against all four serotypes of dengue virus. NPJ Vaccines 2: 2 (2017).
    Yen, Y. T., Chen, H. C., Lin, Y. D., Shieh, C. C., and Wu-Hsieh, B. A. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 82: 12312-12324 (2008).
    Zellweger, R. M., Eddy, W. E., Tang, W. W., Miller, R., and Shresta, S. CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. J Immunol 193: 4117-4124 (2014).
    Zellweger, R. M., Miller, R., Eddy, W. E., White, L. J., Johnston, R. E., and Shresta, S. Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLoS Pathog 9: e1003723 (2013).
    Zellweger, R. M., Prestwood, T. R., and Shresta, S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 7: 128-139 (2010).

    無法下載圖示 校內:2024-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE