簡易檢索 / 詳目顯示

研究生: 黃柄熏
Huang, Bing-Shiun
論文名稱: 應變與溫度效應對矽(Si)與砷化鎵(GaAs)能帶結構的影響
Effects of Strains and Temperature on the Band structures of Si and GaAs
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 62
中文關鍵詞: 密度泛函理論半導體能帶結構薛丁格波動方程式
外文關鍵詞: density functional theory, fhi98md, band structure, strain
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   矽(Si)和砷化鎵(GaAs)是半導體領域中最常被應用的兩個半導體材料,因此矽和砷化鎵許多性質對半導體工業而言是非常重要的,只要能夠了解其材料及物理特性,就能夠增加矽和砷化鎵在半導體工業上的應用與發展。本論文是採用密度泛函理論(Density functional theory DFT)的軟體fhi98md,針對矽和砷化鎵的能帶結構探討應變和溫度效應對其能帶結構的影響。密度泛函理論將系統能量用電子密度函數表示,局部密度近似法(Local density approximation LDA)則是假設電子密度是均勻分佈,虛擬勢能(Pseudopotential)簡化離子與價電子間的作用位勢函數。利用上述方法探討應變對能隙的影響,並進一步研究在不同溫度時,應變對能隙所造成的變化幅度。此外,也模擬不同溫度,晶體達平衡時的晶格常數大小。

     The applications of the Si and GaAs have been getting more and more important in the semiconductor industry. With the feature of Si and GaAs, it has been applied more extensively in the semiconductor field. Therefore, knowing the physical properties of these materials in detail becomes the crucial issue to develop the semiconductor industry. The objective of this thesis is to study the effects of strainsand temperature on the band structures of Si and GaAs by the fhi98md, which is built on the density functional theory(DFT). This constitutes a method in which without loss of rigor one work with electron density as the basic varible, instead of the wave function. The local density approximation(LDA) uses the uniform-electron gas formula for exchange and correlation energy. The pseudopotential approximation removes the core electrons and by replacing them and the strong ionic potential by a weaker pseudopotential that acts on a ser of pseudo wave functions rather than the true valence wave functions. By using above methods, we will discuss the effect of energy gap with respect to the strain and temperature in this thesis. Moreover, we will also simulate the variation of the lattice constant from different temperature in equilibrium state.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 VIII 第1章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 本文架構 3 第2章 量子理論 4 2-1 薛丁格波動方程式 4 2-1-1 波動方程式 4 2-1-2 波函數的物理意義 5 2-1-3 原子的波動理論 6 2-2 固態量子理論 9 2-2-1 能帶 9 2-2-2 布洛赫函數(Bloch functions) 11 2-2-3 克郎尼-潘尼模型(Kronig-Penney model) 12 2-3 逆晶格 15 2-3-1 布拉格定律(Bragg law) 15 2-3-2 逆晶格向量 17 2-3-3 布里淵區(Brillouin zones) 18 第3章 理論計算與方法 21 3-1 HARTREE近似法 21 3-2 HARTREE-FOCK近似法 23 3-3 密度泛函理論 24 3-3-1 The Hohenberg-Kohn theorem 25 3-3-2 The Kohn-Sham method 27 3-3-2-1 Kohn-Sham軌域 27 3-3-2-2 局部密度函數近似法 29 3-3-3 自洽方程式(Self-consistent function) 31 3-4 虛擬勢能(PSEUDOPOTENTIAL) 34 3-4-1 虛擬勢能 34 3-4-2 Supercell 36 3-5 K-POINT MESH 38 3-5-1 Monkhorst-Pack mesh 38 3-5-2 等效k-point mesh 39 3-5-3 Chadi-Cohen mesh 40 3-6 最小能量法 41 3-6-1 Steepest descent method 42 3-6-2 Damped joannopoulos method 42 3-6-3 Williams-Soler method 43 第4章 結果與討論 45 4-1 模擬參數設定 45 4-1-1 start.inp參數設定 45 4-1-2 inp.mod參數設定 47 4-2 矽(SI)與砷化鎵(GAAS)的晶格結構 48 4-3 模擬結果 50 4-3-1 參數設定 50 4-3-2 應變模擬結果 51 4-3-3 溫度效應 54 4-4 結果與討論 56 第5章 結論與未來展望 57 5-1 結論 57 5-2 未來與展望 58 參考文獻 59 自述 62

    [1] P. Hohenberg and W. Kohn, “Inhomogenerous electron gqs,” Phys. Rev, 136, B864, 1964.
    [2] P. Kratzer, C. G. Morgan, E. Penev, A. L. Rosa, A. Schindlmayr, L. G. Wang and T. Zywietz, “Computer code for density-functional theory calcalations for poly-atomic systems,” program version 1.03, 1999.
    [3] R. Eisberg and R. Resnick著, 單溥 陳自強 黃棟洲譯, “量子物理學”, 復漢出版社, 1988.
    [4] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Rev. Mod. Phys, 64, 1045, 1992.
    [5] C. kittel 著, 洪連輝 劉立基 魏榮君譯, “固態物理導論,” 高立圖書有限公司, 2003.
    [6] R. G. Parr and W. Yang, “Density-functional theory of atoms and molecules,” Oxford University Press, New York, pp 7-13, 1989.
    [7] J. H. Van vleck, “Nonorthogonality and ferromagnetism,” Phys. Rev, 49, 232, 1936.
    [8] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev, 140, A1133, 1965.
    [9] W.kohn, “Nobel lecture : Electronic structure of matter-wave functions and density functionals,” Rev. Mod. Phys, vol 71, 1253, 1998.
    [10] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188, 1976.
    [11] D. J. Chadi and M. L. Cohen, “Special points in the Brillouin zone,” Phys. Rev. B, 8, 5747, 1973.
    [12] S. L. Cunningham, “Special points in the two-dimensional Brillouin zone,” Phys. Rev. B, 10, 4988, 1974.
    [13] M. C. Payne, J. D. Joannopoulos, D. C. Allan, M. P. Teter and D. H. vanderbilt, “Molecular dynamics and ab initio total energy calculations,” Phys. Rev. Lett, 56, 2656, 1986.
    [14] M. Bockstedte, A. Kley, J, Neugebauer and M. Scheffler, “Density-functional theory calculations for poly-atomic systems : Electronic structure, static and elastic properties and ab initio molecular dynamics,” Comput. Phys. Commun, 107, 187, 1997.
    [15] M. Fuchs and M. Scheffler, “Ab initio pseudopentials for electronic structure calculations of poly-atomic systems using density-functional theory,” Comput. Phys. Commun, 119, 67, 1999.
    [16] J. Donohue, “The structures of the elements,” Robert E. Krieger Pub. Co, Malabar, Florida, pp 262-266, 1982.
    [17] D. A. Neamen著,李世鴻譯, “半導體物理及元件,” 美商麥格羅.希爾國際股份有限公司 台灣分公司, 台灣, pp 27-78, 2003.
    [18] J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B, 14, 556, 1976.
    [19] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/

    下載圖示 校內:立即公開
    校外:2005-07-22公開
    QR CODE