| 研究生: |
林芳吉 Lin, Fang-Ji |
|---|---|
| 論文名稱: |
鋼結構橋梁ASD與LRFD設計程式之建立與比較 The Development and Comparison of the Steel Bridge Design Program by ASD and LRFD |
| 指導教授: |
朱聖浩
Ju, Shen-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 207 |
| 外文關鍵詞: | LRFD, ASD |
| 相關次數: | 點閱:58 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
橋梁設計規範的建立與發展,必然遵循其特有的設計理念和背景。容許應力設計法(Allowable Stress Design, ASD)於1921年由美國州公路及運輸官員協會(AASHTO)頒佈,為最初且設計步驟簡易之橋梁設計方法,其設計理念在於限制橋梁桿件的行為在線性範圍內。目前,最新發展的橋梁設計方法為載重與抗力因數設計法(Load and Resistance Factor Design, LRFD),其設計理念是以統計學上可靠度分析與或然率的概念為基礎。本文將介紹此兩種設計方法在鋼橋設計部分之規範規定,此外,為了將設計過程簡單化,避免複雜的計算,本文分別將ASD與LRFD兩種方法之設計步驟程式化,並且利用一些鋼橋設計範例,比較此兩種設計方法之程式所處理出來之結果。結果顯示,在臨界狀況之下,以ASD對LRFD方法之主梁與拱的鋼料用量比值(ASD/LRFD)皆大於或等於1.0,因此,在所有鋼橋構件皆符合安全性考量下,以LRFD方法所設計之鋼橋較ASD較為經濟,但差異性並不大。本文中針對鋼橋設計所發展的程式,不但可提供使用者對於鋼橋設計步驟有基本之學習,同時能針對鋼橋在兩種不同規範下做簡單之處理與設計。
ABSTRACT
The establishment and development of provisions of bridge design method shall follow the individual design philosophy and background. Allowable Stress Design (ASD) method is the first bridge design method published by AASHTO in 1921, which is a basic and easy bridge design method where the bridge members are restricted to the linear scope. Presently, the latest bridge design method, Load and Resistance Factor Design (LRFD) method, has been developed based on the philosophy of reliability and probability. Specifications of both design methods for the steel bridge design will be introduced in this thesis. Besides, to facilitate the design procedures and avoid the complex calculation, the steel bridge design programs of both ASD and LRFD are respectively developed in this thesis, and the comparison of the design between ASD and LRFD will be shown by some steel bridge examples. The conclusions show that steel materials ratio ASD/LRFD of main beams or arches are equal to or greater than 1.0 under the critical condition. Therefore, it is obvious that the steel bridge design by the LRFD code is more economical than by the ASD code if all the bridge members are under the consideration of safety. The steel bridge design program in this thesis will provide the users with basic study about steel bridge design procedures and meanwhile help them to easily generate the steel bridge by two different specifications.
REFERENCE
1. 內政部營建署,「鋼結構建築物鋼結構設計技術規範,(二)鋼結構極限設計法規範及解說」,營建雜誌社,台北市,1999。
2. 交通部,「公路橋梁設計規範」,幼獅文化事業股份有限公司,台北市,2001。
3. 胡志男,「鋼結構橋樑分析及設計程式之建立」,碩士論文,國立成功大學土木工程研究所,台南市,2000。
4. 徐耀賜,「橋樑結構之基本功能」,全威圖書有限公司,台北市,民國1997。
5. 徐耀賜、吳東昇,「AASHTO鋼橋設計規範之演進與理念比較」,土木水利季刊,第二十五卷,第四期,第6-33頁,1999。
6. 徐耀賜,「鋼橋設計原理」,全華科技圖書股份有限公司,台北市,1999。
7. 陳生金、曾清銓、楊國珍、歐怡蘭,「橋梁極限設計法規範之探討」,結構工程季刊,第十五卷,第三期,第51-71頁,2000。
8. 蔡丞凱,「鋼結構設計方法之比較」,碩士論文,國立成功大學土木工程研究所,台南市,1997。
9. 戴忠、陳明山、蔡俊鐿,「麥帥二橋之主橋之規劃設計」,結構工程季刊,第十一卷,第三期,第73-83頁,1996。
10. American Association of State Highway and Transportation Officials (AASHTO),“Guide Specifications for Alternate Load Factor Design Procedures for Steel Beam Bridges Using Braced Compact Sections,” Washington, D.C., 1991.
11. American Association of State Highway and Transportation Officials (AASHTO),“Standard Specifications for Highway Bridges,” 16th Ed., Washington, D.C.,1996.
12. American Association of State Highway and Transportation Officials (AASHTO), “AASHTO LRFD Bridge Design Specifications,” 2nd Ed., Washington, D.C., 1998.
13. American Association of State Highway and Transportation Officials (AASHTO), “Standard Specifications for Highway Bridges,” 17th Ed., Washington, D.C., 2002.
14. Barker, R. M., and Puckett, J. A., “Design of Highway Bridges Based on AASHTO LRFD Bridge Design Specifications,” John Wiley & Sons, New York,1997.
15. Chen, W. F., and Duan, Lian, Ed., “Bridge Engineering Handbook,” CRC press, Boca Raton, 1999
16. Galambos, T.V., Ed., “Guide to Stability Design Criteria for Metal Structures,” 4th Ed., John Wiley & Sons, New York, 1988.
17. Goble, G. G., “Geotechnical Related Development and Implementation of Load and Resistance Factor Design (LRFD) Methods,” NCHRP Synthesis of Highway Practice 276, Transportation Research Board, National Research Council, Washington, D.C., 1999.
18. Haaijer, G., Garskaddan, P. S., and Grubb, M. A., “Autostress Design of Steel Bridges,” Journal of Structural Engineering, American Society of Civil Engineers (ASCE), Vol. 109(1), 1983.
19. Hsu, Y. T., “Comparison among AASHTO WSD, LFD and Autostress Design Method for Steel Highway Bridges,” Journal of Feng Chia University, Vol. 27, 63-74, Taiwan, 1994.
20. Moses, Fred, “Calibration of Load Factors for LRFD Bridge Evaluation,”NCHRP Report 454, Transportation Research Board, National Research Council, Washington, D.C., 2001.
21. Nowak, A. S., “Calibration of LRFD Bridge Code,” Journal of Structural Engineering, American Society of Civil Engineers (ASCE), Vol. 121(8), 245-1251, 1995.
22. Nowak, A. S. and Szerszen, M. M., “Bridge Load and Resistance Models,”Engineering Structures, Vol. 20(11), 985-990, 1998
23. Nowak, A. S., “Calibration of LRFD Bridge Code,” NCHRP Report 368, Transportation Research Board, National Research Council, Washington, D.C., 1999.
24. Nielsen, R. J. and et al., “Single-Span Prestressed Girder Bridge: LRFD Design and Comparison,” Journal of Bridge Engineering, American Society of Civil Engineers (ASCE), Vol. 7(1), 22-30, 2002.
25. Segui, W. T., “LRFD Steel Design,” PWS, Boston, 1994.
26. Samaan, M. and et al., “Distribution of Wheel Loads on Continuous Steel Spread-Box Girder Bridges,” Journal of Bridge Engineering, American Society of Civil Engineers (ASCE), Vol. 7(3), 2002.
27. Tabsh, S. W., “Reliability of Composite Steel Bridge Beams Designed Following AASHTO’s LFD and LRFD Specifications,” Structural Safety, 17(4), 225-237, 1996
28. Tamboli, A. R., “Steel Design Handbook: LRFD Method,” McGraw-Hill, New York, 1997.
29. Xanthakos, P. P., “Theory and Design of Bridges,” John Wiley &Sons, New York, 1994.