簡易檢索 / 詳目顯示

研究生: 連敬偉
Lien, Jing-Wei
論文名稱: 含相變材料之多層薄膜的奈米壓痕及微米柱壓縮之力學行為
Nanoindentation and micro-compression behavior of multilayers containing phase transforming materials
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 112
中文關鍵詞: 奈米壓痕相變化鈦酸鋇多層膜微米柱
外文關鍵詞: Nanoindentation, phase-transformation, BaTiO3, micro-compression, multilayers, micro-pillar
相關次數: 點閱:61下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電性(ferroelectric)和鐵彈性(ferroelastic)相變化材料,如二氧化釩(VO2)和鈦酸鋇(BaTiO3),可以藉溫度或是其他外部的力場,如電磁輻射或應力場,進行固態-固態相變化(solid-solid phase transformation)。Landau的相變唯象理論(phenomenological theory of phase transformation)預測,當材料系統在相變化的附近,會處於一個相對高的能量狀態。本研究探討奈米尺度下具有層狀微結構的高阻尼及高勁度(high damping and high stiffness, HDHS)的複合材料。HDHS顆粒狀的複合材料已經被證明具有非常高的整體阻尼及勁度,唯其穩定性仍待進一步研究。本研究間接提供HDHS層狀複合材料的穩定性。
    在實驗試體的準備上,多層薄膜藉由磁控濺鍍(magnetron sputter deposition)的方式將材料鍍在矽(Si)基板上面。至於微米柱則是使用了雙束型聚焦離子束(DB-FIB)來製作,使得薄膜或是矽基板上產生了微米柱的結構。再運用壓痕試驗(nanoindentation)及微壓試驗(micro-compression)量測薄膜和微米柱的力學性質。本研究試體包含鈦酸鋇薄膜(1μm厚),銅/鈦酸鋇/銅(Cu/BaTiO3/Cu)的多層薄膜(總共30nm厚)和它們的微米柱。此外,矽基板微米柱提供了基材性質。研究鈦酸鋇在不同的溫度下,晶格結構由tetragonal到cubic之間的相變化。最後從單層材料的相變化延伸到量測多層薄膜,銅/鈦酸鋇/銅在升溫過程中微結構發生的變化情形。此外由奈米壓痕試驗,探討了MTS G200奈米壓痕試驗機在高溫下的穩定性和準確性。藉由奈米壓痕試驗我們也得到BaTiO3 單層膜之硬度及楊氏模數分別為 11 GPa 和 170 GPa。此外,高溫下量測SiO2的性質與常溫下量測到的相符合,硬度及楊氏模數分別是 9 GPa 和 70 GPa。
    因為溫度引起的相變化,Cu/BaTiO3/Cu微米柱的力與位移關係產生不尋常的跳躍,本文驗證此跳躍之實驗重覆性,且發現純銅對照組並無此現象。對於微壓實驗後的試體進行TEM分析,發現鈦酸鋇薄膜產生局部結晶。本研究量測得的相變溫度範圍落在 40°C (313K) 到 80°C (353K)之間,低於由文獻鈦酸鋇塊體的600°C (873K),原因可能為應力導致相變溫度降低。此外相變化發生的時間總共為0.6秒。

    Phase-transforming materials, such as vanadium dioxide (VO2) or barium titanate (BaTiO3), are known to be ferroelectric and ferroelastic. Solid-solid phase transformation from one crystal symmetry to another upon varying temperature or external electromagnetic radiation or mechanical stress fields can be triggered. As predicted by Landau’s phenomenological theory of phase transition, the material system is at a high energy state in the vicinity of phase transition. The intent of this study was to determine if high damping and high stiffness (HDHS) composites with nano-scale microstructures could be fabricated and realized with phase-transforming inclusions. Bulk particulate composites composed of similar constituents have been shown to possess extremely high damping and high viscoelastic stiffness, and it is expected that composite with nano-scale microstructure may behave in a similar manner.
    Micro-pillars were made using Dual Beam Focused Ion Beam (DB-FIB) out of multilayer thin films, and the films were made by sputtering deposition. Nanoindentation and micro-compression experiments were performed on copper thin films, barium titanate (BaTiO3) thin films, Cu/BaTiO3/Cu multi-layered thin films and micro-pillars. Silicon substrates and silicon micro-pillars were also tested for baseline comparison. High temperature, isothermal and heating nanoindentation tests were conducted on fused silica (amorphous SiO2) to verify the capabilities and isothermal of the MTS G200 nanoindenter. To study the tetragonal to cubic phase transformation in BaTiO3, both isothermal and heating experiments were conducted to investigate the phase transformation of single BaTiO3 layers and related Cu/BaTiO3/Cu multilayers. Nanoindentation tests at high temperature for SiO2 showed its hardness was 9 GPa, and Young’s modulus was 70 GPa. From nanoindentation tests, it was found that the hardness and modulus of BaTiO3 single layer thin films were 11 GPa and 170 GPa, respectively.
    Temperature-induced anomalies in load and displacement signals were observed from the micro-pillar experiments, but not clearly from nanoindentation tests. The phase transformation of the confined barium titanate layer may be responsible for the anomalies. These results provide basic understandings of phase transformation in confined environments. Through TEM analysis, we found crystalline BaTiO3 phases after heating and micro-compression, which may be form due to phase transformation or grain growth. TEM studies of the as-deposited barium titanate films did not show crystalline phases, but the films may still possibly contain a small amount of nanoscale crystalline grains. In addition, it was found that phase transformation temperature was between 40°C (313K) to 80°C (353K), different from the transformation temperature of bulk barium titanate, which is about 600°C (873K). The shift in transformation temperature may be due to stress-induced mechanisms from the geometry and loading conditions. As for stability of the phenomena, it was found that the process took about 0.6 sec. It is possible that phase transformations were occurred in some regions but not detected due to the amount of materials being transformed is not enough to change mechanical loading and displacements.

    Abstract---------------------------------------------------I Abstract (Chinese)---------------------------------------III Acknowledgements-------------------------------------------V Table of Contents----------------------------------------VII Table Lists-----------------------------------------------IX Figures Lists----------------------------------------------X Nomeclature--------------------------------------------XVIII Chapter 1 Introduction-------------------------------1 1.1 Background-----------------------------------------1 1.2 Literature survey----------------------------------4 1.3 Outline-------------------------------------------10 Chapter 2 Experimental methods----------------------11 2.1 Sample preparation--------------------------------11 2.1.1 Thin films from sputtering------------------------11 2.1.2 Micro-pillars preparation-------------------------13 2.2 MTS Nanoindentation system------------------------18 2.2.1 Basic mode (Oliver and Pharr Method, 1992)--------19 2.2.2 Continuous Stiffness Measurement (CSM)------------21 2.2.3 Verification of thermal stability of MTS G200 instrument------------------------------------------------27 2.3 Isothermal nanoindentation tests of BaTiO3 thin films-----------------------------------------------------29 2.4 Shallow indentations of Cu/BaTiO3/Cu multi-layered thin films------------------------------------------------29 2.5 Micro-compression tests---------------------------30 Chapter 3 Results and discussion--------------------32 3.1 BaTiO3 thin films---------------------------------32 3.2 Shallow indentation of Cu/BaTiO3/Cu multi-layered thin films------------------------------------------------39 3.3 Cu/BaTiO3/Cu micro-compression tests--------------49 3.4 Silicon micro-compression tests-------------------74 Chapter 4 Conclusions and future work---------------76 References------------------------------------------------78 Appendix A------------------------------------------------83 Appendix B------------------------------------------------90 Appendix C-----------------------------------------------100

    [1] R.S. Lakes, T. Lee, A. Bersie, Y.C.Wang. Extreme damping in composite materials with negative-stiffness inclusions. Nature, Vol.410, pp.565-567, 2001.

    [2] T. Jaglinski, D. Kochmann, D. Stone, R.S. Lakes. Composite materials with viscoelastic stiffness greater than diamond. Science, Vol.315, pp.620-622, 2007.

    [3] J.M.T.Thompson. “Paradoxical” mechanics under fluid flow. Nature, Vol.296, pp.135-137, 1982.

    [4] F. Falk. Model free energy, mechanics and thermodynamics of shape memory alloys. Acta Metall., Vol.28, pp.1773-1780, 1980.

    [5] R.S. Lakes, and K.W. Wojciechowski. Negative compressibility, negative Poisson’s ratio, and stability. Phys. Stat. Sol. (b), Vol.245, pp.545-551, 2008.

    [6] Y.C. Wang, A. Misra, and R.G. Hoagland. Fatigue properties of nanoscale Cu/Nb multilayers. Scripta Materialia, Vol.54(9), pp.1593-1598, 2006.

    [7] S. Rossnagel. Sputtering and sputter deposition. In K. Seshan, editor, Handbook of ThinFilm Deposition-Processes and Technologies, 2nd Edition, chapter 8, pages 319–348. Noyes Publications, 2001.

    [8] J.A. Thornton. High rate thick film growth. Ann. Rev. Mater. Sci., Vol.7, pp.239–260, 1977.

    [9] X. Zhang and A. Misra. Residual stresses in sputter-deposited copper/330 stainless steel multilayers. Journal of Applied Physics, Vol.96(12), pp7173–7178, 2004.

    [10] A. Barnett, A. Madan, I. Kim, and K. Martin. Hardness and stability of metal–nitride nanoscale multilayers. Scripta Materialia, Vol.50(6), pp.739–744, 2003.

    [11] N. Sridhar, J.M. Rickman, and D. J. Srolovitz. Multilayer film stability. Journal of Applied Physics, Vol.82(10), pp.4852–4859, 1997.

    [12] A. Misra, R.G. Hoagland, and H.Kung. Thermal stability of self-supported nanolayered Cu/Nb films. Philosophical Magazine, Vol.84(10), pp.1021–1028, 2004.

    [13] Wikipedia, http://en.wikipedia.org/wiki/Phase_transition

    [14] P.W. Forsbergh jr. Piezoelectricity, Electrostriction and Ferroelectricity.

    [15] John E. Daniels, Michele V. Manuel, Christopher W. Brink, and Jacob L. Jones. Phase transformation of constrained BaTiO3 particles in a Sn matrix. Scripta Materialia, Vol.(61), pp.391–394, 2009.

    [16] G.A. Samara. Pressure and Temperature Dependences of the Dielectric Properties of the Perovskites BaTiO3 and SrTiO3. Phys. Rev. Vol.151, p.378, 1966.

    [17] 向性一,A Study on the Ferroelectric Domain and Dielectric Properties of Barium Titanate Powders, 國立成功大學礦冶及材料科學研究所 博士論文,民國八十四年七月。

    [18] http://spe.sysu.edu.cn/course/course/10/build/appendix2.htm

    [19] C.H. Wu, J.P. Chu, C.H. Lin, and S.F. Wang. Electrical and Reliability Characteristics of Barrierless Cu-Based Contact for High Dielectric Constant Oxide Thin-Film Device Integration. Journal of The Electrochemical Society, Vol.156 (12) G226-G229, 2009.

    [20] Tsuyoshi Horikawa, Noboru Mikami, Tetsuro Makita, Junji Tanimura, and Masayuki Kataoka. Dielectric Properties of (Ba, Sr)TiO3 Thin Films deposited by RF Sputtering. Jpn.J. Appl. Phys. Vol.32, pp.4126-4130, 1993.

    [21] Cheol Seong Hwang, Soon Oh Park, Hag-Ju Cho, Chang Suk Kang, Ho-Kyu Kang, Sang In Lee, and Moon Yong Lee. Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra-large-scale integrated dynamic random access memory application. Semiconductor R&D Center, Samsung Electronics Company, San No. 24, Nongseo-Lee, Kiheung-Eup, Yongin-Gun, Kyungki-Do 449-900, Korea

    [22] C.J. Lee, J.C. Huang and T. G. Nieh. Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass. Applied Physics Letters, Vol.91, pp.16913, 2007.

    [23] A. Rinaldi and P. Peralta and C. Friesen and K. Sieradzki. Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Materialia, Vol.56, pp.511-517, 2008.

    [24] J.R. Greer. Bridging the gap between computational and experimental length scales: a review on nano-scale plasticity. Review Advanced Materials Science, Vol.13, pp.59-70, 2006.

    [25] W. C. Oliver, and G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, Vol.7(6), pp.1564-1583, 1992

    [26] G. M. Pharr. Measurement of mechanical properties by ultra-low load indentation. Materials Science and Engineering A, Vol.253, pp.151-159, 1998

    [27] G.Fu. Indentation load-displacement relations at the elastic deformation stage. Journal of Materials Science, Vol.39, pp.5573-5575, 2004.

    [28] Anthony C. Fischer-Cripps. Nanoindentation Second Edition. Springer-Verlag. New York. 2004.

    [29] E. G. Herbert, W. C. Oliver and G. M. Pharr. Nanoindentation and the dynamic characterization of viscoelastic solids. Journal of physics D: Applied physics, Vol.41, p.074021, 2008

    [30] B.N Lucas, W.C. Oliver, and J.E. Swindeman. Dynamics of frequency-specific, depth-sensing indentation testing. Materials Research Society Symposia Proceedings, 4/1998.

    [31] W.C. Oliver, G.M. Pharr. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004.

    [32] S. Suresh, T. G. Nieh and B. W. Choi. Nano-indentation of copper thin films on silicon substrates. Scripta Materialia, Vol.41, pp.951-957, 1999.

    [33] Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo. Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness. Materials Science and Engineering A, Vol. 427, pp. 232-240, 2006.

    [34] J.M. S. Juan and M.L. Nó and C.A. Schuh. Superelasticity and shape memory in micro-and nanometer-scale pillars. Advanced Materials, Vol.20, pp. 272-278, 2008.

    [35] L. Shen, L. Wang, T. Liu and C. He. Nanoindentation and morphological studies of epoxy nanocomposites. Macromol. Materials Engineering, Vol.291, pp.1358-1366, 2006.

    [36] AZOMaterials http://www.azom.com/details.asp?ArticleID=2280

    下載圖示 校內:2012-08-25公開
    校外:2012-08-25公開
    QR CODE