| 研究生: |
邱柏鈞 Ciou, Bo-Jyun |
|---|---|
| 論文名稱: |
鋅奈米顆粒在氧化過程時因鋅原子向外擴散所造成的電偶極變遷 The dipole evolution caused by the outward diffusion of Zn atoms during the oxidization process of Zn dots |
| 指導教授: |
羅光耀
Lo, Kuang-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 鋅奈米顆粒 、氧化鋅奈米顆粒 、即時氧化 、二次諧波 、紫外光 |
| 外文關鍵詞: | Zn dot, ZnO dot, in-situ oxidation, second harmonic generation SHG, UV light |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在奈米維度金屬氧化的即時反應情況,由於過去研究中對於金屬整體的氧化的即時動態行為並沒有一個實際的觀測實驗去了解真正的氧化過程中金屬與氧的交互行為,其中還關係到在真空下當金屬表層氧化後接下來金屬將透過何種方式進行再度的氧化,這是值得討論的議題。
實驗在磁控射頻系統高真空(3×10^(-6) torr)下進行,控制系統上氬氫氣流量比例、外加偏壓、基板溫度、成長時間等…,在Si(111)基板上成長出結構完整但表面分布與大小不同的鋅奈米顆粒樣品進行比較後續相關的氧化實驗。在氧化實驗中,除了比較不同表面顆粒大小的鋅奈米顆粒外,也比較不同溫度氧化以及在除了純氧外加入另一種臭氧氣體比較反應狀況,整體氧化的行為透過雷射光照射在10^10顆的鋅奈米顆粒下進行反射式二次諧波系統真空中的即時量測,氧化前鋅奈米顆粒到氧化後帶有氧化鋅球殼的奈米顆粒的整個過程,由於表面3m對稱結構的貢獻,所以在二次諧波所形成的極化強度上有著明顯的差異,這提供了一個氧化過程新的量測方式,並從二次諧波強度隨時間變化中還發現Zn因為表面需要再度氧化而擴散出來的現象,之後也藉由同步輻射XRD分析,得知量子點氧化後之晶體取向,FE-SEM觀察其表面形貌,XPS縱深分析其鋅和氧的成分比例,XANES 吸收光譜分析,去做一些佐證。研究結果可以提供金屬元件在氧化過程的新解釋方法。
In this work, we try to measure the process of metal oxidized in-situ on nano scale. In the past, there were not any researches could observe the reaction between metal and oxygen. Including how the metal would continuously oxide on the oxidative surface. It must have a mechanism. So in this experiment, we used rf-sputtering to grow different size and non-uniform Zn dot in high vacuum pressure (3×10^(-6) torr)on Si(111) surface. In order to grow different sample, we controlled Ar /H2 ratio, bios voltage, substrate temperature etc…In oxidative process, we experiment in different temperature and different gas(O2 and O3) that can compare oxidative rate and extent. Whole oxidation process, it used reflective second harmonic generation system to measure in-situ in high vacuum. The laser light on about 〖10〗^10 Zn nanoparticles. Due to the interface of Zn dot have 3mm symmetrical crystal structure, when laser light that can induce dipole intensity transition. So Zn dot change from Zn dot to ZnO shell/Zn dot that have dipole transition in the surface. Let us have a method to know the metal to oxide shell in-situ. We also observe when ZnO shell produce on Zn dot surface, inward Zn ion may diffuse to outward and oxidation again. This all process have dipole transition which will measure by RSHG. In other experiment method, we use Synchrotron radiation x-ray diffraction to know different crystal orientations after oxidation in different temperature, use FE-SEM take the surface of sample picture, use XPS know the depth and element ratio of Zn and O, and use XANES know Absorption spectrum. All the method may help us to prove the oxidative mechanism on metal.
[1]. Lu Yuan, Yiqian Wang, Rediola Mema, Guangwen Zhou, Acta Materialia 59, 2491–2500 (2011).
[2]. Lu Yuan, Chao Wang, Rongsheng Cai, Yiqian Wang, Guangwen Zhou, Journal of Crystal Growth 390,101–108 (2014).
[3]. N. Caberra and N. F. Mott, Rep. Prog. Phys. 12, 163 (1948–1949)
[4]. Vladimir P. Zhdanov , Bengt Kasemo , Chemical Physics Letters 452, 285–288 (2008).
[5]. Alexandre Ermoline and Edward L. Dreizin, Chemical Physics Letters, 505, 47–50 (2011).
[6]. C. M. Wang, D. R. Baer, L. E. Thomas, J. E. Amonette, Jiji Antony and You Qiang, G. Duscher, J. Appl. Phys. 98, 094308 (2005)
[7]. E. Sutter and P. Sutter, J. Phys. Chem. C, 116, 20574−20578 (2012).
[8]. Kuo-Chih Chou, Qun Luo, Qian Li, Jie-Yu Zhang, Intermetallics 47, 17-22 (2014).
[9]. R.Nakamura, J.-G. Lee, D. Tokozakura , H. Mori, H. Nakajima, Materials Letters 61, 1060–1063 (2007).
[10]. V.P. Zhdanov and B. Kasemo, Nano letter, 9, 2172 (2009).
[11]. L. Klinger, E.Rabkin, MaterialsLetters161, 508–510 (2015).
[12]. Haibo Zeng, Xiaoming Li, Huijie Zhao, Xue Ning and Jiayue Xu, RSC Adv., 5, 25717–25722 (2015).
[13]. Chun-Hua Chen, Tomohiko Yamaguchi, Ko-ichi Sugawara, and Kenji Koga, J. Phys. Chem. B, Vol. 109, No. 44 (2005).
[14]. Eli Sutter , Francisco Ivars-Barcelo , and Peter Sutter, Part. Part. Syst. Charact., 31, 879–885 (2014).
[15]. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
[16]. Zhong Lin Wang, J. Phys.: Condens. Matter 16, R829–R858 (2004).
[17]. Lukas Schmidt-Mende and Judith L. MacManus-Driscoll, materialstoday VOLUME 10, NUMBER 5 (2007).
[18]. C.S. Prajapati, Dennis Visser, Srinivasan Anand, Navakanta Bhat, Sensors and Actuators B 252 764–772 (2017)
[19]. C.Y. Liu , B.P. Zhang , N.T. Binh , Y. Segawa, C.Y. Liu et al. / Optics Communications 237 65–70 (2004)
[20]. M. Suchea, S. Christoulakis , K. Moschovis , N. Katsarakis , G. Kiriakidis, M. Suchea et al. / Thin Solid Films 515 551–554(2006)
[21]. Bongjin S. Mun , Zhi Liu , Md Abdul Motin , Probir C. Roy ,Chang Min Kim , international journal of hydrogen energy 43 655- 661 (2018)
[22].Wikipedia(https://en.wikipedia.org/wiki/Zinc#/media/File:Hexagonal_close_packed.svg.)
[23]. Mika Niskanen, Mikael Kuisma, Oana Cramariuc, Viacheslav Golovanov, Terttu I. Hukka, Nikolai Tkachenko and Tapio T. Rantala, Phys. Chem. Chem. Phys., 15, 17408--17418 (2013).
[24].莊達人 著,VLSI 製造技術,高立圖書股份有限公司,P146-160 (1995)
[25].陳海峰,薛莹洁,表面技術 56-63 (2016)
[26].陳建人,真空技術與應用,國家實驗研究院儀器科技研究中心出版 (2008)
[27]. P.J. Kelly, R.D. Arnell, Vacuum 56 159-172 (2000)
[28].泓威科技,真空鍍膜設備
[29]. Bo-Jia Huang, Li-Chi Kao, Sanjaya Brahma, Yu-En Jeng,Shang-Jui Chiu, Ching-Shun Ku and Kuang-Yao Lo, J. Phys. D: Appl. Phys. 50 (2017)
[30]. C.C. Liu, J.H. Huang, C.S. Ku, S.J. Chiu, J. Ghatak, S. Brahma, C.W. Liu, C.P. Liu, and K.Y. Lo, Scientific Reports 5, 12533 (2015).
[31]. C. Schwab, G. Meister, J. Woll, A. Gerlach, A. Goldmann, Surface Science 457 273–284 (2000)
[32]. D. A. Koos, * V. L. Shannon, * and G. L. Richmond, Physical review b volume 47, number 8 4730-4734 (1992)
[33]. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL, 2007
[34].Kelin Kuhn ,Laser Engineering ,Prentic-Hall (1998)
[35]. Robert W. Boyd, “ Nonlinear Optics 3ed. ” (2008)
[36]. Noriaki KAWAMOTO, Miki FUJITA, Tomohiko TATSUMI and Yoshiji HORIKOSHI, Jpn. J. Appl. Phys. Vol. 42 7209–7212(2003)
[37]. Frigo, M.、FFTW: An adaptive software architecture for the FFT、IEEE、3、1381-1384(1998).
[38]. Forest Shih-Sen Chien,∗, Chang-Ren Wang, Yu-Lin Chan, Hsiao-Lan Lin,
Min-Hung Chen, Ren-Jang Wu, Sensors and Actuators B 144 120–125 (2010)
[39]. Ariadne C.Catto, Luís F. da Silva, Caue Ribeiro, Sandrine Bernardinid, Khalifa Aguir, Elson Longo Valmor. R. Mastelaro, J. Name., 00 (2012)
[40]. KENNETH R LAWLESS, Rep. Pvog. Phys. 37 231-316 (1974)
[41]. Christopher B. Jacobs , Artem B. Maksov , Eric S. Muckley , Liam Collins ,
Masoud Mahjouri-Samani, Anton Ievlev , Christopher M. Rouleau, Ji-Won Moon,
David . Graham , Bobby . Sumpter & Ilia N. Ivanov, Scientific reports(2017)
[42]. Shan-Wei Fan, Arvind K. Srivastava, and Vinayak P. Dravid, APPLIED PHYSICS LETTERS 95, 142106 (2009)
校內:2024-08-01公開