簡易檢索 / 詳目顯示

研究生: 林書玄
Lin, Shu-hsuan
論文名稱: 具抗反射性質的超親水自潔表面之設計與製備
Design and Fabrication of Superhydrophilic Self-Cleaning Surfaces with Antireflective Properties
指導教授: 楊毓民
Yang, Yu-min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 奈米粒子薄膜重複煅燒抗反射設計逐層組裝紫外光催化自潔薄膜厚度折射率
外文關鍵詞: self-cleaning, antireflection, UV illumination, repeated calcination, photocatalytic degradation, nanoparticle thin films, Layer-by-layer assembly
相關次數: 點閱:95下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於製備超親水自潔而且具備抗反射性質的奈米粒子薄膜。運用全奈米粒子的靜電吸附逐層組裝(ELbL assembly)可在玻璃基板上交替沉積7 nm二氧化鈦粒子及22 nm二氧化矽粒子的TiO2/SiO2雙層,並透過週期性的重複燒逐層組裝之製程,在文獻中首次成功地將雙層數目提高至120,而且可保持高達94%的平均穿透度並具有良好的親水性及紫外光催化自潔效果。
    藉由光學薄膜商用軟體的模擬設計與分析,得知當TiO2/SiO2 (7nm/22nm)奈米粒子薄膜的折射率維持在1.28的條件下,即使厚度超過微米尺寸,仍然有95%的平均穿透度。實驗結果顯示,以每30個雙層為週期進行重複燒逐層組裝的製程,可成功地製備出雙層數目為120且仍為透明的粒子薄膜;相較之下,以逐層組裝的製程所製備的粒子薄膜,在雙層數目為60時平均穿透度已降至87%,當雙層數目再增為80時,平均穿透度更降為67%。經低倍率顯微觀測,推測應是薄膜於燒時龜裂,形成大小不一的區塊所致。此外,由橢圓儀及掃描式電子顯微鏡的測定數據得知粒子薄膜的折射率平均為1.30,且薄膜以每雙層約20 nm的厚度線性成長,與模擬的結果符合。本研究也將不同雙層數目的粒子薄膜進行亞甲藍的紫外光催化降解實驗。結果顯示不論是真接在亞甲藍水溶液中進行光催化或是先吸附亞甲藍再進行光催化,重複燒逐層組裝的製程所製備的120雙層奈米粒子薄膜皆具有最佳的光催化降解效率。

    In this study, the fabrication of superhydrophilic self-cleaning and anti- reflective nanoparticle thin films has been developed. Layer-by-layer (LbL) assembly of TiO2 and SiO2 nanoparticles deposition alternately as a bilayer was performed using glass substrate and first raise the number of bilayers with repeated calcination up to 120 which exhibiting antireflection, superhydro- philicity and self-cleaning properties.
    Commercial optical thin film software was used to design and analyze the TiO2/SiO2 nanoparticle thin films based on the fixed refractive index of 1.28 and the average transmittance about 95% even with micro-scale thickness was realized. Transparent 120-bilayer nanoparticle thin films were successfully fabricated by LbL assembly with repeated calcination every 30 bilayers as a period. By contrast, the average transmittance of the nanoparticle thin films fabricated by LbL assembly lowered to 87% and 67% as the number of bilayers increased to 60 and 80, respectively. It was supposed that the reduced transparency resulted from the cracks contributing various blocks. In addition, average refractive indices of the nanoparticle thin films about 1.30 and linear growth behavior nearly 20 nm for a bilayer of the multilayers were determined using ellipsometry and scanning electron microscopy. Furthermore, photo- catalytic degradation of methylene blue by the nanoparticle thin films with different number of bilayers under UV illumination was studied via solution and adsorption method. In both cases, 120-bilayer nanoparticle thin films fabricated by LbL assembly with repeated calcination showed the best self-cleaning property.

    摘要............................................................................................................Ⅰ Abstract.......................................................................................................Ⅱ 誌謝............................................................................................................Ⅲ 目錄............................................................................................................Ⅳ 表目錄........................................................................................................Ⅶ 圖目錄........................................................................................................Ⅷ 第一章 緒論…………………………………………………………1 1.1 前言...........................................................................................1 1.2 研究動機與目的.......................................................................1 第二章 文獻回顧……………………………………………………4 2.1 抗反射原理...............................................................................4 2.1.1 破壞性干涉機制.............................................................4 2.1.2 漸變折射率機制.............................................................5 2.1.3 抗反射膜之製備.............................................................6 2.2 抗反射膜的設計.......................................................................7 2.2.1 玻璃基板.........................................................................8 2.2.2 矽基板.............................................................................8 2.3 奈米粒子薄膜的製備...............................................................9 2.3.1 聚電解質與奈米粒子混成薄膜.....................................9 2.3.2 全奈米粒子薄膜.............................................................10 2.4 二氧化鈦自潔表面................................................................... 11 2.4.1 超親水性質.....................................................................11 2.4.2 光催化性質.....................................................................14 第三章 實驗…………………………………………………………16 3.1 藥品…………………………………………………………16 3.2 儀器設備及裝置……………………………………………17 3.2.1 光學薄膜設計分析軟體.................................................17 3.2.2 浸鍍機(Dip Coator)......................................................17 3.2.3 雷射光散射法粒徑測定儀.............................................18 3.2.4 紫外光-可見光(UV-Vis)光譜儀.................................. 19 3.2.5 掃描式電子顯微鏡(Scanning Electron Microscope)...20 3.2.6 靜態接觸角測量儀.........................................................20 3.2.7 動態接觸角分析儀(Dynamic Contact Angle Analyzer, DCA)..............................................................................21 3.2.8 橢圓偏光儀(Ellipsometer)............................................22 3.2.9 紫外光源.........................................................................23 3.2.10 高溫爐.............................................................................24 3.2.11 Mili-Q超純水系統.........................................................24 3.3 實驗方法...................................................................................26 3.3.1 TiO2/SiO2奈米粒子薄膜的模擬....................................26 3.3.2 TiO2與SiO2懸浮液的配製.............................................26 3.3.3 玻璃基板的清洗及帶電.................................................26 3.3.4 TiO2/SiO2奈米粒子薄膜的製備....................................27 3.3.5 穿透度量測.....................................................................29 3.3.6 動態接觸角量測.............................................................29 3.3.7 光催化反應測試.............................................................29 3.3.8 橢圓儀量測.....................................................................33 第四章 結果與討論…………………………………………………34 4.1 基板及基板上薄膜的反射率之計算與模擬...........................34 4.2 薄膜的折射率及厚度對可見光穿透度之影響.......................36 4.3 雙層數目對薄膜的可見光穿透度之影響...............................37 4.4 不同的逐層組裝製程對粒子薄膜的穿透度之改善...............49 4.4.1 懸浮液更新逐層組裝.....................................................49 4.4.2 重複燒逐層組裝.........................................................52 4.5 薄膜的厚度與雙層數目之關係...............................................71 4.6 雙層數目對薄膜的親水性之影響...........................................81 4.7 薄膜對紫外光光催化降解亞甲藍的結果...............................83 4.7.1 紫外光對亞甲藍水溶液的影響.....................................83 4.7.2 以溶液法比較不同層數的薄膜之紫外光催化能力.....84 4.7.3 以吸附法比較不同層數的薄膜之紫外光催化能力.....87 4.7.4 紫外光催化能力與雙層數目之關係.............................90 第五章 結論與建議…………………………………………………93 5.1 結論...........................................................................................93 5.2 建議...........................................................................................95 參考文獻....................................................................................................96 附錄A.........................................................................................................103 附錄B.........................................................................................................108 自述............................................................................................................109

    Adamian, Z.N., Hakhoyana, A.P., Aroutiounian, V.M., Barseghiana, R.S.and Touryan, K.J., “Solar cells with porous silicon as antireflection layer,” Proceedings of SPIE - The International Society for Optical Engineering, 4458, 1-9 (2001).
    Baeumler. M., Mller, S., Khler, K. and Wagner, J., “Assessment of layer composition and thickness in AlGaN/GaN HEMT structures by spectroscopic ellipsometry,” Phys. Stat. Sol. (a), 202, 4, 665-670 (2005).
    Bilyalov, R.R., Groh, B., Lautenschlager, H., Schindler, R. and Schomann, F., “Screen printed multicrystalline silicon solar cells with porous
    silicon antireflection coating,” Conference Record of the IEEE Photovoltaic Specialists Conference, 147-150 (1997).
    Bravo, J., Zhai, L., Wu, Z., Cohen, R.E. and Rubner, M.F.,“Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, 23, 7293- 7298 (2007).
    Cebeci, F.C., Wu, Z., Zhai, L., Cohen, R.E. and Rubner, M.F.,“Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings,” Langmuir, 22, 2856-2862 (2006).
    Chakravartya, B.C., Tripathia. J., Sharmaa. A.K., Kumara. R., Soodb, K.N., Samantac, S.B. and Singha, S.N., “The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating,” Solar Energy Materials & Solar Cells, 691, 701-706 (2007).
    Chen, D.,“Anti-refection (AR) coatings made by sol-gel processes: A review,” Solar Energy Materials & Solar Cells, 68 ,313-316 (2001).
    Chen, D., Yan, Y., Westenberg, E., Niebauer, D., Sakaitani, N., “Development of anti-reflection(AR)coating on plastic panels for display applications,” J. Sol-Gel Sci.& Tech., 19, 77-82 (2000).
    Dek, A., Szkely, I., Klmn, E., Keresztes, Zs., Kovcs, A.L. and Hrvlgyi, Z., “Nanostructured silica Langmuir-Blodgett films with antireflective properties prepared on glass substrate, ”Thin Solid Films,
    484, 310-317 (2005).
    Decher, G., “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science, 277, 1232-1237 (1997).
    Fujishima, A., Rao, T.N., Tryk, D.A., “Titanium dioxide photocatalysis,”J.Photochem. Photobiol. C:Photochemistry Reviews, 1, 1–21 (2000).
    Fujishima, A., “Discovery and applications of photocatalysis - creating a comfortable future by making use of light energy,” Japan Nanonet Bulletin, 44, 1-3 (2005).
    Gan, W.Y., Lam, S.W., Chiang, K., Amal, R., Zhao, H. and Brungs, M.P.,“Novel TiO2 thin film with non-UV activated superwetting and anitifogging behaviours,” J. Mater. Chem., 17, 952-954 (2007).
    Hattori, H., “Anti-reflection surface with particle coating deposited by electrostatic attraction,” Adv. Mater., 13, 1, 51-54 (2001).
    He, J.A., Mosurkal, R., Samuelson, L.A., Li, L. and Kumar, J., “Dye- sensitized solar cell fabricated by electrostatic layer-by-layer assembly of amphoteric TiO2 nanoparticles,” Langmuir, 19, 2169-2174 (2003).
    Hiller, J., Mendelsohn, J.D. and Rubner, M.F., “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nature Materials, 1, 59-63, (2002).
    Houas. A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J-M., “Photocatalytic degradation pathway of methylene blue in water,”
    Applied Catalysis B: Enviromental, 31, 145-157 (2001)
    Iler, R.K., “Multilayers of colloidal particles,” J. Colloid Interf. Sci., 21, 569-594 (1966).
    Ishihara, Y., Hirai, T., Sakurai, C., Koyanagi, T., Nishida, H. and Komatsu, M., “Applications of the particle ordering technique for conductive antireflection films,” Thin Solid Films, 411, 11, 50-55 (2002).
    Jin, P., Xu, G., Tazawa, M. and Yoshimura, K., “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Applied Physics A: Materials Science & Processing, 77, 455-
    459 (2003).
    Kim, J.H., Fujita, S. and Shiratori, S., “Fabrication and characterization of TiO2 thin film prepared by a layer-by-layer self-assembly method,” Thin Solid Films, 499, 83-89 (2006).
    Kotov, N.A., Dkny, I. and Fendler, J.H., “Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films,” J. Phys. Chem., 99, 13065-13069 (1995).
    Krogman, K.C., Zacharia, N.S., Grillo, D.M. and Hammond, P.T., “Photocatalytic layer-by-layer coatings for degradation of acutely toxic agents,” Chem. Mater., 20, 1924-1930 (2008).
    Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J-M., “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red,
    Methylene Blue) in water by UV-irradiated titania,” Applied Catalysis B Enviromental, 39, 75-90 (2002).
    Lee, D., Gemici, Z., Rubner, M.F. and Cohen, R.E., “Multilayers of oppsitely charged SiO2 nanoparticles: Effects of surface charge on multilayer assembly,” Langmuir, 23, 8833-8837 (2007).
    Lee, D., Rubner, M.F. and Cohen R.E., “All-nanoparticle thin-film coatings,” Nano Letters, 6, 10, 2305-2312 (2006).
    Lein, S.Y., Wuu, D.S., Yeh, W.C, and Liu, J.C., “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Solar Energy Materials & Solar Cells, 90, 2710-2719 (2006).
    Linsebigler, A.L., Guangquan, L., Yates, J.T.Jr., “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chemical Reviews, 95, 735-738 (1995).
    Lvov, Y., Ariga, K., Onda, M., Ichinose, I. and Kunitake, T., “Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions,” Langmuir, 13, 6195-6203 (1997).
    Macleod, H.A.,Thin-Film Optical Filters, 2nd ed., McGrew-Hill, New York (1986).
    Mills, A. and McFarlane, M., “Current and possible future methods of assessing the activities of photocatalyst films,” Catalysis Today, 129, 22-28 (2007).
    Minot, M.J., “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5µ,” J. Opt. Soc. Am., 66, 6, 515-519 (1976).
    Mitzi, D.B., “Thin-film deposition of organic-inorganic hybrid materials,”Chem. Mater., 13, 3283-3298 (2001).
    Mizuta, T., Ikuta, T., Minemoto, T., Takakura, H., Hamakawa, Y., and Numai, T., “An optimum design of antireflection coating for spherical silicon solar cells,” Solar Energy Materials & Solar Cells, 90, 46–56 (2006).
    Newman, G.A., “Anti-reflective coatings by APCVD using graded index layers,” J. Non-Cryst. Solid., 218, 92-99 (1997).
    Parkin, I.P. and Palgrave, R.G., “Self-cleaning coatings,” J. Mater. Chem., 15, 1689-1695 (2005).
    Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M.R., Shtein, M., Kieffer, J., Lahann, J. and Kotov, N.A., “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir, 23, 7901-7906 (2007).
    Prevo, B.G., Hon, E.W. and Velev, O.D., “Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells,” J. Mater. Chem., 17, 791-799 (2007).
    Richter, A., Guico, R. and Wang, J., “Calibrating an ellipsometer using X-ray reflectivity,” Rev. Sci. Instrum., 72, 7, 3004-3007 (2001).
    Sun, Y., Hao, E., Zhang, X., Yang, B., Shen, J., Chi, L. and Fuchs, H., “Buildup of composite films containing TiO2/PbS nanoparticles and polyelectrolytes based on electrostatic interaction,” Langmuir, 13, 5168-5174 (1997).
    Szekeres, M., Kamalin, O., Schoonheydt, R.A., Wostyn, K., Clays, K., Persoons, A. and Dkny, “Ordering and optical properties of mono- layers and multilayers of silica spheres deposited by the Langmuir-Blodgett method,” J. Mater. Chem., 12, 3268-3274 (2002).
    Takagi, K., Makimoto, T., Hiraiwa, H. and Negishi, T., “Photocatalytic, antifogging mirror,” J. Vac. Sci. Technol. A., 19, 6, 2931-295 (2001).
    Thin Film Center Inc., Essential Macleod, V8.16.208, USA (2008).
    TOTO Co., http://www.toto.co.jp/products/hydro/genri.htm (2006).
    Vedam, K., “Spectroscopic ellipsometry:A historical overview,” Thin Solid Films, 313-314, 1-2, 1-9 (1998).
    Walheim, S., Schffer, E., Mlynek, J. and Steiner, U., “Nanophase-separated polymer films as high-performance antireflection coatings,”Science, 22, 283, 520-522 (1999).
    Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T., “Light-induced amphiphilic surfaces,” Nature, 388, 431-432 (1997).
    Yeh, Y.C.M., Ernest, F.P. and Stirn, R.J., “Practical antireflection coatings for metal-semiconductor solar cells,” J. Applied Physics, 47, 9, 4107-4112 (1976).
    Yoldas, B.E., “Investigations of porous oxides as an antireflective coating for glass surfaces,” Applied Optics, 19, 9, 1425-1429 (1980).
    Yoldas, B.E. and Partlow. D.P., “Wide spectrum antireflective coating for fused silica and other glasses,” Applied Optics, 23, 9, 1418-1424 (1984).
    Yuan, W., Ji, J., Fu, J. and Shen, J., “A facile method to construct hybrid multilayered films as a stronge and multifunctional antibacterial coating,” J. Biomedical Materials Research – Part B Applied Biomaterials, 85, 2, 556-563 (2008).
    Zeman, P. and Takabayashi, S., “Self-cleaning and antifogging effects of TiO2 films prepared by radio frequency magnetron sputtering,” J. Vac. Sci. Technol. A., 20, 2, 388-392 (2002).
    Zhang, X.T., Fujishima, A., Jin, M., Emeline, A.V. and Murakami, T.,“Double- layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties,” J. Phys. Chem. B., 110, 25142-25148 (2006).
    Zhang, X.T., Sato, O., Taguchi, M., Einaga, Y., Murakami. T. and Fujishima. A., “Self-cleaning particle coating with antireflection properties,” Chem. Mater, 17, 696-700 (2005).
    Zhang, X., Wang, Y., Chen, X. and Yang. W., “Fabrication and characterization of a novel inorganic MnO2/LDHs multilayer thin film via a layer-by-layer self-assembly method,” Mater. Lett., 62, 1613-1616 (2008).
    Zhao, J., Wang, A. and Green, M.A., “Double layer antireflection coating for high-efficiency passivated emitter silicon solar cells,” IEEE Trans. Electron Devices, 41, 9, 1592-1594 (1994).
    丁嘉仁,許沁如,聶雅玉,張哲瑋,「次波長結構抗反射膜片發展現況」機械工業雜誌, 282, 71-73 (2006).
    王勝民,「新世代的綠色產品-光催化觸媒」化工資訊,14, 35-45, (2000)
    李正中,「薄膜光學與鍍膜技術」第二版,藝軒圖書出版社,台北市 (2001).
    李世欽與孫承正,「多樣化的多功性薄膜」科學發展, 422, 51-53 (2008).
    鄭智鴻,「量身訂做的二氧化鈦光觸媒之合成及應用」國立成功大學化學工程學系碩士論文 (2006).
    劉博滔,「奈米二氧化矽製備多孔性低折射率塗層之膠體行為」化工, 53, 4, 44-48 (2006).

    下載圖示 校內:2009-07-14公開
    校外:2009-07-14公開
    QR CODE