簡易檢索 / 詳目顯示

研究生: 彭冠勛
Peng, Kuan-Hsun
論文名稱: 甲烷/氫氣預混火焰於帶有穿透孔之不鏽鋼/鉑觸媒隔板反應器之燃燒特性研究
Combustion characteristics of methane− /hydrogen−air premixed flames in the combined steel−platinum catalytic partition reactor with a percolated hole
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 94
中文關鍵詞: 觸媒微燃燒器火焰穩駐機制不鏽鋼/鉑觸媒隔板反應器觸媒誘發預混火焰Kriging模型優化
外文關鍵詞: Catalytic micro combustion, flame stabilizing mechanism, combined steel-platinum catalytic partition reactor, catalytically-stabilized premixed flame, Kriging modal
相關次數: 點閱:173下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討具有穿透孔之不鏽鋼/鉑觸媒隔板反應器的燃燒性能與火焰穩駐機制,並使用Kriging模型優化整體系統之燃燒效率。觸媒微燃燒器是由分段式觸媒是由鉑與不鏽鋼接合組成,而分段式觸媒平板將主燃燒器分成兩個區域。氫氣−空氣混合氣與甲烷−空氣混合氣分別注入於兩側流道之中。在過去的研究中,反應器上的穿透孔不僅可以提供一個低速流區域以穩駐微火焰,還可以促使兩側流道的燃燒化學物質與自由基藉由擴散或流入進行誘發氣相火焰生成。
    比較傳統平板燃燒器與具有穿透孔的平板燃燒器之模擬結果顯示,具有穿透孔的燃燒器在不同的燃氣條件下,呈現較高的甲烷−空氣之燃燒效率。其主要的原因是在穿透孔附近的氫氣−空氣燃燒反應提供所產生的化學熱能與自由基,可以有效地輔助另一微流道中的甲烷−空氣觸媒誘發預混火焰。然而,氫氣-空氣預混火焰的樣態會影響另一側流道的甲烷−空氣觸媒誘發預混火焰之穩住機制,其火焰穩住機制易遭受到兩側流道的燃氣當量比例,以及燃氣流速比不同而衍生出的溫度與速度梯度不平衡,進而影響燃燒穩定性與燃燒效率。
    最後,本研究採用Kriging模型對具有穿透孔的燃燒器進行操作參數與系統參數進行甲烷−空氣燃燒效率之優化,綜合優化結果得知甲烷−空氣流速是影響甲烷−空氣燃燒效率最大的參數,其次是:白金孔洞位置、甲烷−空氣當量比。影響最低的參數是氫氣−空氣流速以及氫氣−空氣當量比。系統優化最佳條件為甲烷−空氣當量比為 0.7,甲烷−空氣流速為 5 m/s;氫氣−空氣當量比為 0.9 ,氫氣−空氣流速為 10 m/s、穿透孔位置為 15 mm。

    This study aims to investigate the combustion efficiency and combustion stabilizing mechanism of the combined stainless steel−platinum catalytic partition reactor with a perforated hole. Then, the optimal Kriging model was employed to optimize the overall combustion efficiency of the proposed micro combustion system. The micro catalytic combustor was partitioned by the combined stainless steel−platinum plate(s) into two channels. Hydrogen−air and methane−air mixtures were injected into each channel individually. The gap provided a low-velocity region to stabilize the catalytically-stabilized premixed flame and space to trade the species and radicals diffusing or flowing from both channels, leading to the inception of gas reaction.
    Compared the simulation results of the micro flat combustor (FC) and flat combustor with a hole (FCH), it is obvious to note that the methane−air combustion efficiency of the FCH is much higher than that of the FC. The reaction in the vicinity of the perforated hole provides thermal energy and sufficient radicals to sustain the methane−air flame in the upper channel. However, the parameters of the combustor configuration also had been discussed, such as the hole location and hole size. It is interesting to note that the flame modes of the hydrogen−air mixture in the lower channel would affect the flame stabilizing mechanism and combustion efficiency of the methane−air mixture in the upper channel. It is due to the imbalance of thermal and velocity gradients in the vicinity of the perforated hole.
    In this study, the Kriging model was used to optimize the operational and design parameters of the FCH for maximizing the combustion efficiency of the methane−air mixture. The results indicated the order of the utmost influencing parameter was the flow rate of the methane−air mixture, the location of the perforated hole, and the equivalence ratio of the methane−air mixture. The insignificant parameters were the flow rate of the hydrogen−air mixture and the equivalence ratio of the hydrogen−air mixture. Consequently, the optimal condition of the combined stainless steel−platinum catalytic partition reactor with a perforated hole is the equivalence ratio of the methane−air mixture = 0.7, the flow rate of the methane−air mixture = 5 m/s, the equivalence ratio of the hydrogen−air mixture = 0.9, the flow rate of the hydrogen−air mixture = 10 m/s, and the location of the perforated hole is 15 mm away from the combustion basement.

    摘要 I Abstract II 致謝 IV Content V List of tables VII List of figures VIII Nomenclature XI Chapter 1 Introduction 1 1-1 Background 1 1-2 Problems encountered in the miniaturization 4 1-3 Basic principles of catalyst combustion 12 1-4 Optimization 16 1-5 Motivation 17 1-6 Objective 18 1-7 Methodology 19 Chapter 2 Numerical methods 20 2-1 Physical and numerical model 20 2-2 Chemical reaction mechanism 24 2-3 Mesh division 24 2-4 Model validation 26 Chapter 3 Design Parameters of the Catalyst Combustor for Combustion Efficiency 29 3-1 Effect of the perforation presence 29 3-2 Effect of inlet velocity in the combustor 40 3-3 Effect of equivalence ratio 51 Chapter 4 Discussion of the Flame Stabilizing Mechanism 55 Chapter 5 Optimization 61 5-1 Parametric studies 61 5-1.1 Inlet velocity 67 5-1.2 Equivalence ratio 68 5-2 Optimization result 70 Chapter 6 Conclusion 79 Reference 82 Appendix 1 87 Appendix 2 93

    [1] Y. Yan, Y. Liu, L. Li, Y. Cui, L. Zhang, Z. Yang, Z. Zhang, Numerical comparison of H2/air catalytic combustion characteristic of micro–combustors with a conventional, slotted or controllable slotted bluff body. Energy. 2019;189:116242.
    [2]V. Shirsat, A.K. Gupta, A review of progress in heat recirculating meso-scale combustors. Applied Energy. 2011;88:4294-4309.
    [3]C.F. Pello, Micropower generation using combustion: Issues and approaches. Proceedings of the Combustion Institute. 2002;29:883-899.
    [4]H.L. Cao, J.L. Xu, Thermal performance of a micro-combustor for micro-gas turbine system. Energy Conversion and Management. 2007;48:1569-1578.
    [5]J.R. Hsu, Laser Raman Measurement And Numerical Studies of Combustion in Catalytic Micro-tubes. 2003.
    [6]J. Mueller, I. Chakraborty, S. Vargo, D. Bame, C. Marrese, W. Tang, MEMS-micropropulsion activities at JPL. The 2nd International Conference on Integrated Micro-Nanotechnology for Space Applications. 2000:175-200.
    [7] Y.C. Chao, G.B. Chen, C.Y. Wu, C.P. Chen, Development of a catalytic hydrogen micro-propulsion system. Combustion Science and Technology. 2006;178:2039-2060.
    [8] G.P. Sutton, O. B, Rocket propulsion elements. 4th ed. Wiley. 2001.
    [9]N. Chigier, T. Gemci, A Review of Micro Propulsion Technology. 41st aerospace sciences meeting and exhibit. 2003.
    [10]Y.C. Chao, G.B. Chen, C.J. Hsu, T.S. Leu, C.Y. Wu, T.S. Cheng, Operational characteristics of catalytic combustion in a platinum microtube. Combust Sci Tech. 2004;176:1755-1777.
    [11]J. Yiguang, K. Maruta, Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science. 2011;37:669-715.
    [12]N. Chigier, T. Gemci, A Review of Micro Propulsion Technology. 41st aerospace sciences meeting and exhibit. 2003.
    [13]B. Aravind, G.K.S. Raghuram, V.R. Kishore, S. Kumar, Compact design of planar stepped micro combustor for portable thermoelectric power generation. Energy Conversion and Management. 2018;156:224-234.
    [14]R.A. Yetter, V. Yang, M.H Wu, Y. Wang, D. Milius, I.A. Aksay, F.L. Dryer, Combustion issues and approaches for chemical microthrusters. Energetic materials and chemical propulsion. 2007;6:393-424.
    [15]A.P. London, A.A. Ayón, A.H. Epstein, S.M. Spearing, T. Harrison, Y. Peles, Microfabrication of a high pressure bipropellant rocket engine. Sensors and Actuators A: Physical. 2001;92:351-357.
    [16]D.H. Lewis, S.W. Janson, R.B. Cohen, E.K. Antonsson. Digital micropropulsion. Sensors and Actuators A: Physical. 2000;80:143-54.
    [17]H.T. Aichlmayr, D.B. Kittelson, M.R. Zachariah. Miniature free-piston homogeneous charge compression ignition engine-compressor concept—Part I: performance estimation and design considerations unique to small dimensions. Chemical Engineering Science. 2002;57:4161-4171.
    [18]R. Srinivasan, I.M. Hsing, P.E. Berger, K.F. Jensen, S.L. Firebaugh, M.A. Schmidt. Micromachined reactors for catalytic partial oxidation reactions. AIChE Journal. 1997:3059-3069.
    [19] C.M. Miesse, R.I. Masel, C.D. Jensen, M.A. Shannon, M. Short. Submillimeter-scale combustion. AIChE Journal. 2004:3206-3214.
    [20]Y. Yan, G. Wu, W. Huang, L. Zhang, L. Li, Z. Yang, Numerical comparison study of methane catalytic combustion characteristic between newly proposed opposed counter-flow micro-combustor and the conventional ones. Energy. 2019;170:403-410.
    [21]F.H. Wu, Research and development of an advanced meso-scale burner using innovative catalyst segmentation and cavity. 2011.
    [22]A. Veeraragavan, C.P Cadou, Heat Transfer in Mini∕Microchannels With Combustion: A Simple Analysis for Application in Nonintrusive IR Diagnostics. Journal of Heat Transfer. 2008;130:124504.
    [23]F.P. Carlos, Micropower generation using combustion: Issues and approaches. Proceedings of the combustion institute. 2002:082-784.
    [24]K. Maruta, K. Takeda, J. Ahn, K. Borer, L. Sitzki, P.D. Ronney, Extinction limits of catalytic combustion in microchannels. Proceedings of the Combustion Institute. 2002;29:957-963.
    [25]N.I. Kim, S. Kato, T. Kataoka, T. Yokomori, S. Maruyama, T. Fujimori, Flame stabilization and emission of small Swiss-roll combustors as heaters. Combustion and Flame. 2005;141:229-240.
    [26] T.K. Pham, D.R. Derek, W.A. Sirignano. Flame structure in small-scale liquid film combustors. Proceedings of the Combustion Institute. 2007;31:3269-3275.
    [27]D. Shimokuri, S. Ishizuka, Flame stabilization with a tubular flame. Proceedings of the Combustion Institute. 2005;30:399-406.
    [28]Y. Yan, H. Wang, W. Pan, L. Zhang, L. Li, Z. Yang, Numerical study of effect of wall parameters on catalytic combustion characteristics of CH4/air in a heat recirculation micro-combustor. Energy Conversion and Management. 2016;118:474-484.
    [29]Y.H. Li, G.B. Chen, F.H. Wu, T.S. Cheng, Y.C. Chao. Combustion characteristics in a small-scale reactor with catalyst segmentation and cavities. Proceedings of the Combustion Institute. 2013;34:2253-2259.
    [30]Y.H. Li, G.B. Chen, T.S. Cheng, Y.L. Yeh, Y.C. Chao. Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics. Energy. 2013;61:150-157.
    [31]A. Jones, S. Lloyd, F.J. Weinberg, Combustion in heat exchangers. Proceedings of the Royal Society of London A Mathematical and Physical Sciences. 1978;360:97-115.
    [32]F. Weinberg, Heat-Recirculating Burners: Principles and Some Recent Developments. Combustion science and technology. 1996;121:3-22.
    [33]N.I. Kim, S. Aizumi, T. Yokomori, S. Kato, T. Fujimori, K. Maruta, Development and scale effects of small Swiss-roll combustors. Proceedings of the Combustion Institute. 2007;31:3243-3250.
    [34]W. Wang, Z. Zuo, J. Liu, Numerical study of the premixed propane/air flame characteristics in a partially filled micro porous combustor. Energy. 2019;167:902-911.
    [35]W.M. Yang, S.K. Chou, K.J. Chua, J. Li, X. Zhao, Research on modular micro combustor-radiator with and without porous media. Chemical Engineering Journal. 2011;168:799-802.
    [36]J. Wan, W. Yang, A. Fan, Y. Liu, H. Yao, W. Liu, A numerical investigation on combustion characteristics of H2/air mixture in a micro-combustor with wall cavities. International Journal of Hydrogen Energy. 2014;39:8138-8146.
    [37]K.M. Kim, S.W. Baek, C.Y. Han, Numerical study on supersonic combustion with cavity-based fuel injection. International Journal of Heat and Mass Transfer. 2004;47:271-286.
    [38]O. Demoulin, B.L. Clef, M. Navez, P. Ruiz. Combustion of methane, ethane and propane and of mixtures of methane with ethane or propane on Pd/γ-Al2O3 catalysts. Applied Catalysis A: General. 2008;344:1-9.
    [39]O. Demoulin, M. Navez, P. Ruiz, Investigation of the behaviour of a Pd/γ-Al2O3 catalyst during methane combustion reaction using in situ DRIFT spectroscopy. Applied Catalysis A: General. 2005;295:59-70.
    [40]Y.H. Li, G.B. Chen, H.W. Hsu, Y.C. Chao. Enhancement of methane combustion in microchannels: Effects of catalyst segmentation and cavities. Chemical Engineering Journal. 2010;160:715-722.
    [41]O. Deutschmann, R. Schmidt, F. Behrendt, J. Warnat, Numerical modeling of catalytic ignition. Symposium (International) on Combustion. 1996;26:1747-1754.
    [42]A.B. Mhadeshwar, P. Aghalayam, V. Papavassiliou, D.G. Vlachos, Surface reaction mechanism development for platinum-catalyzed oxidation of methane. Proceedings of the Combustion Institute. 2002;29:997-1004.
    [43]J.Y. Ran, L.J. Zhao, Numerical simulation of hydrogen assisted lean methane catalytic oxidation in a micro-channel. Journal of Combust Science and Technology. 2011:196-203.
    [44]Y.H. Li, G.B. Chen, F.H. Wu, T.S. Cheng, T.C. Chao, Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel. Combustion and Flame. 2012;159:1644-1651.
    [45]Y.T. Wu, Y.H. Li, Combustion characteristics of a micro segment platinum tubular reactor with a gap. Chemical Engineering Journal. 2016;304:485-492.
    [46]H. Daneshvar, R. Prinja, N.P. Kherani. Thermophotovoltaics: Fundamentals, challenges and prospects. Applied Energy. 2015;159:560-575.
    [47]Y.H. Li, J.R. Hong, Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor. Applied Energy. 2018;211:843-853.
    [48]D.C. Walther, J. Ahn, Advances and challenges in the development of power-generation systems at small scales. Progress in Energy and Combustion Science. 2011;37:583-610.
    [49]J. Li, Y. Wang, J. Chen, J. Shi, X. Liu. Experimental study on standing wave regimes of premixed H2–air combustion in planar micro-combustors partially filled with porous medium. Fuel. 2016;167:98-105.
    [50]Z. Zhang, K. Wu, R. Yuen, W. Yao, J. Wang, Numerical investigation on the performance of bluff body augmented micro cavity-combustor. International Journal of Hydrogen Energy. 2020;45:4932-4945.
    [51]G.B. Chen. Catalytic combustion of Gasified biomass in a platinum monolith honeycomb reactor. 2002.
    [52]Y. Ju, K. Maruta, Microscale combustion and power generation. New York: Springer; 2011:333-334.
    [53]W.C. Pfefferle, L.D. Pfefferle, Catalytically stabilized combustion. Progress in Energy and Combustion Science. 1986;12:25-41.
    [54]W.C. Pfefferle. Method of starting a combustion system utilizing a catalyst. 1977.
    [55]C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli, An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum. Combustion and Flame. 2002;128:340-368.
    [56]M. Reinke, J. Mantzaras, R. Bombach, S. Schenker, A. Inauen, Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar. Combustion and Flame. 2005;141:448-468.
    [57]N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R.Vaidyanathan, P.K Tucker, Surrogate-based analysis and optimization. Progress in Aerospace Sciences. 2005;41:1-28.
    [58]D. Gorissen, W. Hendrickx, T. Dhaene, Adaptive Global Metamodeling with Neural Networks. European Symposium on Artificial Neural Networks 2007:187-192.
    [59]D.R. Jones, M. Schonlau, W.J. Welch. Efficient global optimization of expensive black-box functions. Journal of Global optimization. 1998;13:455-492.
    [60]C.H. Kuo, P.D. Ronney, Numerical modeling of non-adiabatic heat-recirculating combustors. Proceedings of the Combustion Institute. 2007;31:3277-3284.
    [61]J. Wan, A. Fan, Effect of solid material on the blow-off limit of CH4/air flames in a micro combustor with a plate flame holder and preheating channels. Energy Conversion and Management. 2015;101:552-560.
    [62]W.L. Chen, C.W. Huang, Y.H. Li, C.C. Kao, H.T. Cong. Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and Stirling engine. Energy. 2020;194:116862.
    [63]J. Warnatz, R.W. Dibble, U. Maas, Combustion, Physical and Chemical Fundamentals, Modeling and Simulation. 1996.
    [64]O. Deutschmann, L.I. Maier, U. Riedel, A.H. Stroemman, R.W. Dibble, Hydrogen assisted catalytic combustion of methane on platinum. Catalysis Today. 2000;59:141-150.

    下載圖示 校內:2022-01-31公開
    校外:2022-01-31公開
    QR CODE