簡易檢索 / 詳目顯示

研究生: 郭育傑
Kuo, Yu-Jie
論文名稱: 水滴撞擊鹽水面產生氣泡及噪音特性之研究
Impact of Single Water Droplets on a Saline Water Surface
指導教授: 黃清哲
Huang, Ching-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 86
中文關鍵詞: 氣泡噪音阻尼係數形狀振動鹽水水滴
外文關鍵詞: saline water, bubble, shape oscillation, damping constant, noise, water drop
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以實驗方法探討單一水滴降落鹽水面時氣泡產生的過程及噪音之特性,並探討不同鹽度對氣泡振動阻尼的影響。實驗分為兩部分,第一部份之實驗是利用數位式高速照相機拍攝水滴降落鹽水面時氣泡形成之過程;另一部份則是以水中收音器量測水滴降落鹽水面時產生之噪音,並用Gabor transform將時域訊號轉換成時間–頻率域,得知訊號之頻率特性。此外,藉由分析噪音之訊號,可得氣泡振動之阻尼係數。實驗結果顯示水滴撞擊鹽水面產生氣泡的類型與清水的情形相似,主要有三種類型。但是氣泡在鹽水中會有分裂的現象,氣泡會由一顆分裂成兩顆或更多顆,而且其生成機制也比清水的情形複雜。當鹽水的鹽度較小時,實驗所得氣泡振動之阻尼係數與理論值相當接近。而當鹽度增加到海水的鹽度時,實驗所得氣泡振動之阻尼係數與理論值相差較大。主要原因為鹽水中氣泡的起始形狀不是球形,會因氣泡表面的形狀振動造成額外的能量損失。因此若加上形狀振動所造成的阻尼,會使得阻尼係數的理論值與實驗值較為接近。

      The bubble formation and underwater sound produced by a single water drop impacting on the saline water was investigated experimentally in this study. A CCD camera was set up to photograph the drop impact and the process of bubble formation. Underwater sound was received using a hydrophone connected to a charge amplifier and a data-acquisition system for capturing the main characteristics of the sound. The time-series of the underwater sound was transformed into the time-frequency domain using the Gabor transform. The damping constants were then determined from the measured bubble sound. The experimental results show that bubble types generated by the water drops impacting on the saline water are similar to those of the fresh water. There are three main types of bubble formation. When the salinity of the saline water is small, the experimental damping coefficients are in good agreement with the theoretical values. However, as the salinity of the saline water is increased to be that of the seawater, the deviation between the theoretical and experimental damping constants becomes apparent. This is due to that in the saline water the initial shape of the bubble is non-spherical. The associated shape oscillation of the bubble induces extra energy loss. If the damping constant due to the shape oscillation is included, then the experimental damping constants compare favorable with the theoretical values.

    目 錄 中文摘要 I 英文摘要 II 謝誌 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-2氣泡的形成和降雨噪音特性之研究 1 1-3氣泡阻尼機制研究 3 1-4研究目的 5 第二章 理論分析 6 2-1雨滴撞擊水面的速度 6 2-2 Rayleigh-Plesset 方程 8 2-3 二階線性微分運動方程 10 2-4 熱阻尼(thermal damping) 12 2-4-1 無因次的熱阻尼常數 12 2-4-2 熱過程常數 對阻尼常數的影響 16 2-4-3 氣泡表面張力 常數對阻尼常數的影響 17 2-4-4 熱擴散係數 對熱阻尼常數的影響 18 2-5 黏滯阻尼(viscous damping) 18 2-6 輻射阻尼(radiation damping) 20 2-7 氣泡形變(distortion of shape)所造成的阻尼 22 2-8 Gabor Transform 24 第三章 實驗佈置與方法 27 3-1實驗設備 27 3-2實驗佈置及方法 28 3-2-1雨滴撞擊和氣泡產生過程拍攝及紀錄 28 3-2-2雨滴撞擊鹽水面產生氣泡之噪音量測 29 3-2-3鹽水溶液的配置 30 第四章 實驗結果與討論 32 4-1環境噪音分析 32 4-2水滴撞擊水面產生之氣泡類型 32 4-3水滴撞擊鹽水面產生氣泡及噪音特性 33 4-4 氣泡的阻尼係數 37 4-5理論與實驗阻尼值之比較 38 第五章 結論與建議 40 5-1結論 40 5-2建議 41 參考文獻 42

    參考文獻

    1. Chapman, R. B. and M. S. Plesset, “Thermal effects in the free oscillations of gas bubbles,” Trans. ASME D. Vol. 94, pp. 142-145 (1972).
    2. Crowther, P. A., ”Bubble noise creation mechanisms,” in Sea Surface Sound, edited by B. R. Kerman, Kluwer Academic Publishers, pp. 131-150 (1988).
    3. Culkin, F. and Smith, N., “Determination of the concentration of potassium chloride solution having the same electrical conductivity, at 15°C and infinite frequency, as standard seawater of salinity 35.0000 ‰ (Chlorinity 19.37394 ‰),”Oceanic Engineering, IEEE. Vol. 5, pp.22-23 (1980).
    4. Devin, C. Jr., “Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water,” J. Acoust. Soc. Am. Vol. 31, pp. 1654-1667 (1959).
    5. Dingle, A. N. and Lee, Y., “Terminal fall speeds of raindrops,” J. Appl. Meteor., Vol. 11, pp. 877-879 (1972).
    6. Ffowcs-Williams, J. E. and Y. P. Guo, “On resonant nonlinear bubble oscillations,” J. Fluid Mech. Vol. 224, pp. 507-529 (1991).
    7. Friedlander, B. and B. Porat, “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust. Speech Signal Process.Vol.37,pp. 169-180 (1989).
    8. Friedlander, B. and A. Zeira, “Oversampled Gabor representation for trainsent signals,” IEEE Trans. Signal Process. , Vol.43, pp. 2088-2094 (1995).
    9. Gabor, D., “Theory of communication,” J.I.E.E., Vol. 93, pp.429-459 (1946).
    10. Gerhard, N., Willard, J. and Pierson, J. R, Principles of physical oceanography (1966).
    11. Gunn, R. and Kinzer, G. D., “The terminal velocity of fall for water droplets in stagnant air,” J. Meteor., Vol. 6, pp. 243-248 (1949).
    12. Hsiao, M., Lichter, S. and Quintero, L.G., “The critical Weber number for vortex and jet formation for drops impinging on a liquid pool,” Phys. Fluids, Vol. 31, pp.3560-3562 (1988).
    13. Jerzy, Dera. Marine Physics. Elsevier oceanography series,53 (1992).
    14. Keller, J. B. and I. I. Kolodner, “Damping of underwater explosion bubble oscillations,” J. Acoust. Soc. Am. Vol. 27, pp. 1152-1161 (1956).
    15. Knudsen, V. W., Alford, R. S., and Emiling, J. W., “Underwater ambient noise” J. Mar. Res. 7, pp. 410-429 (1948).
    16. Lamb, H. Hydrodynamics, 6th ed. Cambridge University Press (1932).
    17. Lauterborn, W, “Numerical investigation of nonlinear oscillations of gas bubbles in liquids,” J. Acoust. Soc. Am., Vol.59, pp.283-293 (1976).
    18. Leighton, T. G., The Acoustic Bubble, London : Academic Press (1994).
    19. Longuet-Higgins, M. S., “Monopole emission of sound by asymmetric bubble oscillations,” Part 1. Normal modes, J. Fluid Mech. Vol. 201, pp. 525-541 (1989a).
    20. Longuet-Higgins, M. S., “Monopole emission of sound by asymmetric bubble oscillations,” Part 2. An initial value problem, J. Fluid Mech. Vol. 201, pp. 543-565 (1989b).
    21. Longuet-Higgins, M. S., “Resonance in nonlinear bubble oscillations,” J. Fluid Mech. Vol. 224, pp. 531-549 (1991).
    22. Longuet-Higgins, M. S., “Nonlinear damping of bubble oscillation by resonant interaction,” J. Acoust. Soc. Am. Vol. 91, pp. 1414-1422 (1992).
    23. Medwin, H., Kurgan, A. and Nystuen, J. A., “Impact and bubble sound form raindrops at normal and oblique incidence,” J. Acoust. Soc. Am., Vol.88, pp. 413-418 (1990).
    24. Medwin, H., Nystuen, J. A., Jacobus, P. W., and Ostwald, L. H., “The anatomy of underwater rain noise,” J. Acoust. Soc. Am., Vol.92, pp. 1613-1623 (1992).
    25. Minnarert, M., “On musical air bubbles and the sounds of running water,” Phil. Mag, Vol. 16, pp. 235-248 (1993).
    26. Nystuen, J. A., “Rainfall measurements using underwater ambient noise,” J. Acoust. Soc. Am., Vol. 69, pp. 972-982 (1986).
    27. Nystuen, J. A., and Medwin, H., “Underwater sound produced by rainfall: Secondary splashes of aerosols,” J. Acoust. Soc. Am., Vol. 97, pp. 1606-1613 (1995).
    28. Oguz, H. N. and Prosperetti, A., “Bubble entrainment by the impact of drops on liquid surfaces,” J. Fluid. Mech., Vol. 219, pp. 1433-179 (1989).
    29. Okabe, J. and Inoue, S., “The Generation of Vortex Ring, II.” Rep. Res. Inst. Appl. Mech., Kyushu Univ., Vol.9, pp.147-152 (1961).
    30. Panton, R. L., “Incompressible Flow,” John Wiley and Sons (1984).
    31. Pumphrey, H. C., “Sources of ambient noise in the ocean: an experimental investigation,” Ph. D dissertation, University of Mississippi (1989).
    32. Pumphrey, H. C. and Crum, L. A., “Underwater sound produced by individual drop impacts and rainfall,” J. Acoust. Soc. Am., Vol.58, pp.1518-1526 (1989).
    33. Pumphrey, H. C., and Elmore, P. A., “The entrainment of bubbles by drop impacts,” J. Fluid. Mech., Vol.220, pp.539-567 (1990).
    34. Scrimger, J. A., “Underwater noise caused by precipitation,” Nature, No. 318, pp.674-657 (1985).
    35. Scrimger, J. A., and Evans, D.J., “Underwater noise due to rain, hail, and snow,” J. Acoust. Soc. Am., Vol. 80, pp.79-86 (1987).
    36. Scrimger, J. A., and Evans, D.J., and Yee, W., “Underwater Noise due to Rain-Open Ocean Measurements,” J. Acoust. Soc. Am., Vol. 85, pp.726-831 (1989).
    37. Strasberg, M., “The pulsation frequency of nonspherical gas bubbles,” J. Acoust. Soc. Am. Vol. 25, pp. 536-537 (1953).
    38. Strasberg, M., “Gas bubbles as sources of sound in liquids,” J. Acoust. Soc. Am. Vol. 28, pp. 20-26 (1956).
    39. Tsamopoulos, J.A. and R. A. Brown, “Nonlinear oscillation of inviscid drops and bubbles,” J. Fluid. Mech., Vol. 127, pp. 519-537 (1983).
    40. Thomson, J.J. and Newall, H.F., “On the Formation of Vortex Rings by Drops Falling into Liquids, and Some Allied Phenomena,” Proc. R. Soc. London, Vol.29, pp.417-436 (1885).
    41. Worthington, A. M., “A study of splashes,” reprinted 1963, Macmillan, New York (1908).
    42. 葉智惠,“水滴撞擊水面產生氣泡之類型及噪音特性之研究”,國立成功大學水利及海洋工程研究所碩士論文 (2002)。(指導教授 黃清哲)

    下載圖示 校內:立即公開
    校外:2004-08-04公開
    QR CODE