| 研究生: |
蔡瑞和 Tsai, Jui-He |
|---|---|
| 論文名稱: |
以微矩陣基因晶片探討細胞經紫外線照射後之基因表現 Application of cDNA microarray on studies of UVC-induced cell’s gene expressions |
| 指導教授: |
黃溫雅
Huang, Wenya 張憲彰 Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 核酸切除修復 、GADD45A 、GADD153 、微矩陣基因晶片 |
| 外文關鍵詞: | microarray, GADD45A, GADD153, NER |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微矩陣基因晶片技術的發展使得科學家可以快速的檢測細胞內整體基因的表現。對於基因之間互相影響的關係可更正確快速的定義。本實驗之目的為了解一些核酸切除修復(NER)因子之功能與其影響之下游基因,故使用HeLa細胞(核酸切除修復正常)與著色性乾皮症病人細胞所作成的細胞株~XPC (XP4PA-SV)細胞(核酸切除修復缺失)進行比較。將細胞照射紫外線(254 nm)後再給予不同的培養時間 讓其進行修復,之後抽取細胞之mRNA進行微矩陣基因晶片檢測。再使用ScanAlyze 2程式(史丹佛大學Partick O. Brown研究室發展)將晶片上的訊號強度定量,最後用Principal component analysis (PCA)統計方法分析,此統計方法可將相同表現趨勢的基因歸納為群組(factor),每一群組中的基因再利用t-test分析而判知其基因表現趨勢。研究中每個實驗組皆使用3片晶片,如此可除去偽陽性訊號,且只有顯示機率(p)小於0.05的基因才是確實的結果。這些基因會再用反轉錄聚合酶連鎖反應(RT-PCR) 再次印證其基因表現。
經由PCA分析後,可得到4個基因表現趨勢不同的群組(factors),每個群組中包含2-4個基因。在這些基因中,發現growth arrest and DNA-damage-inducible 153 (GADD153)與growth arrest and DNA-damage-inducible 45, alpha (GADD45A)在與XP4PA-SV細胞HeLa細胞經紫外線照射後有不同的基因表現。再使用RT-PCR進一步的分析其它NER正常與缺失的細胞,結果發現GADD153在HeLa細胞與XPC細胞所表現出的差異,並不是因為DNA修復功能有差異而導致此現象。在GADD45A的基因表現方面,NER缺失的細胞照射完紫外線30分鐘後就有快速上升表現的現象,而在NER正常的細胞中則是較晚才有上升表現。推測可能是因為細胞中某些修復蛋白功能有問題,使得細胞內的GADD45A有代償作用而在早期上升表現,以使得細胞能夠盡其所能的去修復其損傷。
DNA microarray technology allows scientists to detect global gene expressions of cells. The goal of this research project is to understand the functions of nucleotide excision repair (NER) factors and the genes that they regulate. The HeLa cells (NER proficient) and XPC mutant cells (NER deficient) were subjected to studies of the responses to post-UVC irradiation by cDNA microarray. The cellular mRNAs from both cell lines were isolated and hybridized to the genes on the cDNA chip. The signals were quantitated by the software ScanAlyze 2 (developed by Brown, C. A.). For statistical analysis microarray data, each experimental condition was performed in triplicates. Principal component analysis (PCA) was then applied to identify genes whose expressional changes were associated. The gene expression changes were also confirmed by the t-test analysis as well as RT-PCR on each individual gene.
By PCA, four major expression patterns were identified, depending on the directionality of expression changes in each gene from the control to various lengths of post-UVC incubation. We found that the expressions of growth arrest and DNA-damage-inducible 153 (GADD153) and growth arrest and DNA-damage-inducible 45, alpha (GADD45A) different in the HeLa cells and XP4PA-SV cells. The GADD153 and GADD45A expressions in other NER proficient and deficient cells were also examined. We found that expression levels of the GADD153 gene did not show a strong correlation with in vivo NER activity. In the case of the GADD45A gene, it was up-regulated in the XPC cells 30 minutes after the UVC irradiation; however, it was induced much later in the NER proficient cells. Besides XPC cells, the NER deficient XPA cells also demonstrated the early induction of the GADD45A gene. It is concluded that the expression of GADD45A gene is immediately activated in these XP cells.
1. B. Lewin, 2000. Genes VII. Oxford University Press, New York.
2. 梁凱莉, 高惠娟編譯, 1997. 普通生物化學. 合記圖書出版社發行, 台北.
3. S. B. Adayabalam and A. B. Vilhelm, 2000. Genomic heterogeneity of nucleotide excision repair. Gene, 250, 15-30.
4. E. C. Friedberg, G. C. Walker, and W. Siede, 1995. DNA repair and mutagenesis. American Society for Microbiology Press, Washington, D. C.
5. D. L. Mitchell, J. Jen and J. E. Cleaver, 1992. Sequence specificity of cyclobutane pyrimidine dimmers in DNA treated with solar (ultraviolet B) radiation. Nucleic Acids Research, 20, 225-229.
6. F. Bourre, G. Renault and A. Sarasin. Sequence effect on alkali- sensitive sites in UV-irradiated SV40 DNA, 1987. Nucleic Acids Research, 15, 8861-8875.
7. C. Petit and A. Sancar, 1999. Nucleotide excision repair: From E. coli to man. Biochimie, 81, 15-25.
8. A. K. Ganesan, J. Hunt and P. C. Hanawalt, 1999. Expression and nucleotide excision repair of a UV-irradiated reporter gene in unirradiated human cells. Mutation Research, 433, 117-126.
9. W. L. de Laat, N. G. J. Jaspers and J. H. J. Hoeijmakers, 1999. Molecular mechanism of nucleotide excision repair. Genes & Development, 13, 768-785.
10. T. Lindahl and R. D. Wood, 1999. Quality Control by DNA Repair. Science, 286, 1897-1905.
11. J. H. J. Hoeijmakers, 2001. Genome maintenance mechanisms for preventing cancer. Nature, 411, 366-374.
12. J. E. Cleaver, 1968. Defective repair replication in xeroderma pigmentosum. Nature, 218, 652-656.
13. J. H. Robbins, K. H. Kraemer, M. A. Lutzner, B. W. Festoff and H. G. Coon, 1974. Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms and abnormal DNA repair. Annals of Internal Medicine, 80, 221-248.
14. H. Takebe, Y. Miki, T. Kozuka, J. I. Fujiwara, K. Tanaka, M. S. Sasaki and H. Akiba, 1977. DNA repair characteristics and skin cancers of xeroderma pigmentosum patients in Japan. Cancer Research, 367, 490-495.
15. K. H. Kraemer, M. M. Lee and J. Scotto, 1987. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Archives of Dermatological Reasearch, 123, 241-250.
16. J. E. Cleaver, 2000. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. Journal of Dermatological Science, 23, 1-11.
17. K. K. Bowman, C. A. Smith and P. C. Hanawalt, 1997. Excision-repair patch lengths are similar for transcription-coupled repair and global genome repair in UV-irradiated human cells. Mutation Research, 385, 95-105.
18. J. Venema, A. van. Hoffen, A. T. Natarajan, A. A. van. Zeeland and L. H. F. Mullenders, 1990. The residual repair capacity of xeroderma pigmentosum complementation group c fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Research, 18, 443-448.
19. A. van Hoffen, J. Venema, R. Maschini, A. A. van. Zeeland and L. H. F. Mullenders, 1995. Transcription coupled repair removes both cyclobutane pyrimidine dimmers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group c fibroblasts. The EMBO Journal, 14, 360-
367.
20. A. M. Cordonnier and R. P. P. Fuchs, 1999. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutation Research, 435, 111-119.
21. 鄭郅言, 白果能. 寡核酸晶片製造及其在基因檢測之應用,2001. 科儀新知第二十二卷第五期 8-19.
22. J. Khan, M. L. Bittner, Y. Chen, P. S. Meltzer and J. M. Trent, 1999. DNA microarray technology: the anticipated impact on the study of human disease. Biochemica et Biophysica Acta, 1423, M17-M28.
23. N. L.W. van Hal, O. Vorst, A. M. M. L. van Houwelingen, E. J. Kok, A. Peijnenburg, A. Aharoni, A. J. van Tunen and J. Keijer, 2000. The application of DNA microarrays in gene expression analysis. Journal of Biotechnology, 78, 271-280.
24. C. C. Xiang and Y. Chen, 2000. cDNA microarray technology and its applications. Biotechnology Advances, 18, 35-46.
25. J. Walker and K. Rigley, 2000. Gene expression profiling in human peripheral blood mononuclear cells using high-density filter-based cDNA microarrays. Journal of Immunological Methods, 239, 167-179.
26. C. C. Chen, B. Shief, Y. T. Jin, Y. E. Liau, C. H. Huang, J. T. Liou, L. W. Wu, W. Huang, K. C. Young, M. D. Lai, H. S. Liu and C. Li, 2001. Microarray profiling of gene expression patterns in bladder tumor cells treated with genistein. Journal of Biomedical Science, 8, 214-222.
27. D. A. Lashkari, J. L. Derisi, J. H. Mccusker, A. F. Namath, C. Gentile, S. Y. Hwang, P. O. Brown and R. W. Davis, 1997. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proceedings of the National Academy of Science of the United States of America, 94, 13057-13062.
28. H. Tao, C. Bausch, C. Richmond, F. R. Blattnerand T. Conway, 1999. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. Journal of Bacteriology, 181, 6425-6440.
29. K. Wang, L. Gan, E. Jeffery, M. Gayle, A. M. Gown, M. Skelly, P. S. Nelson, W. V. Ng, M. Schummer, L. Hood and J. Muligan, 1999. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene, 299, 101-108.
30. M. Wolf , W. El-Rifai, M. Tarkkanen, J. Kononen, M. Serra, E. F. Eriksen, I. Elomaa, A. Kallioniemi, O. P. Kallioniemi and S. Knuutila, 2000. Novel findings in gene expression detected in human osteosarcoma by cDNA microarray. Cancer Genetics and Cytogenetics, 123, 128-132.
31. S. N. Guzder, P. Sung, L. Prakash and S. Prakash, 1998. Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. The Journal of Biological Chemistry, 273, 31541-31546.
32. L. E. T. Jansen, R. A. Verhage and J. Brouwer, 1998. Preferential binding of yeast Rad4-Rad23 complex to damaged DNA. The Journal of Biological Chemistry, 273, 33111-33114.
33. R. Legerski and C. Peterson, 1992. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group c. Nature, 359, 70-73.
34. L. Li, C. Peterson and R. Legerski, 1996. Sequence of the mouse xpc cDNA and genomic structure of the human xpc gene. Nucleic Acids Reasearch, 24, 1026-1028.
35. L. E. T. Jansen, R. A. Verhage and J. Brouwer, 1998. Preferential binding of yeast Rad4-Rad23 complex to damage DNA. The Journal of Biologigal Chemistry, 273, 33111-33114.
36. S. Prakash and L. Prakash, 2000. Nucleotide excision repair in yeast. Mutation Research, 451, 13–24.
37. C. Masutani, K. Sugasawa, J. Yanagisawa, T. Sonoyama, M. Ui, T. Enomoto, K. Takio, K. Tanaka, P. J. van der Spek and D. Bootsma, 1994. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group c protein and a human homologue of yeast RAD23. The EMBO Journal, 13, 1831-1843.
38. P. J. van der Spek, E. M. E. Smit, J. H. J. Hoeijmakers and A. Hagemeijer, 1994. Chromosomal localization of three repair genes: the xeroderma pigmentosum group c gene and two human homologs of yeast Rad23. Genomics, 23, 651-658.
39. K. Sugasawa, C. Masutani, A. Uchida, T. Maekawa, P. J. van der Spek, D. Bootsma, J. H. J. Hoeijmakers and F. Hanaoka, 1996. hHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Molecular and Cellular Biology, 16, 4852-4861.
40. K. Sugasawa, J. Ng, C. Masutani, T. Maekawa, A. Uchida, P. J. van der Spek, A. P. M. Eker, S. Rademakers, C. Visser, A. Aboussekhra, R. D. Eood, F. Hanaoka, D. Bootsma and J. H. J. Hojimakers, 1997. Two human homologs of Rad23 are functionally interchangeable in complex formation and stimulation of XPC repair acitivity. Molecular and Cellular Biology, 17, 6924-6931.
41. C. Masutani,M. Araki, K. Sugasawa, P. J. van der Spek, A.Yamada, A. Uchida, T. Maekawa, D. Bootsma, J. H. J. Hojimakers and F. Hanaoka, 1997. Identification and characterization of XPC-binding domain of hHR23B. Molecular and Cellular Biology, 17, 6915-6923.
42. L. Li, X. Lu, C. Peterson and R. Legerski, 1997. XPC interacts with both hHR23B and hHR23A in vivo. Mutation Research, 383, 197-203.
43. J. Venema, A. van Hoffen, V. Karcagi, A. T. Natarajan, A. A. van Zeeland and L. H. F. Mullenders, 1991. Xeroderma pigmentosum complementation group c cells remove pyrimidine dimers selectively from the transcribrd strand of active genes. Molecular and Cellular Biology, 11, 4128-4134.
44. S. Emmert, N. Kobayashi, S. G. Khan and K. H. Kraemer, 2000. The xeroderma pigmentosum group c gene leads to selective repair of cyclobutane pryimidine dimmers rather than 6-4 photoproducts. Proceedings of the National Academy of Science,USA, 97, 2151-2156.
45. M. Yokoi, C. Masutani, T. Maekawa, K. Sugasawa, Y. Ohkuma and F. Hanaoka, 2000. The xeroderma pigmentosum group c protein complex XPC-hHR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. The Journal of Biological Chemistry, 275, 9870-9875.
46. K. B Mullis, F. Ferre, R. A. Gibbs and J. D. Watson, 1994. The polymerase chain reaction. Birkhauser, Boston.
47. M. I. Pividori, A. Merkoci and S. Alegret, 2000. Electrochemical genosensor design: immobilization of oligonucleotide onto transducer surfaces and detection methods. Biosensors & Bioelectronics, 15, 291-303.
48. J. Sambrook and D. W. Russel, 2001 . Molecular cloning: a laboratory manual, 3, A9.38-42. 3rded. Cold Spring Harbor Laboratory Press, New York.
49. J. D. Luethy and N. J. Holbrook, 1992. Activation of the gadd153 promoter by genotoxic agents: a rapid and specific response to DNA damage. Cancer Research, 52, 5-10.
50. M. K. K. Shivji, A. P. M. Eker and R. D. Wood, 1994. DNA repair defect in xeroderma pigmentosum group c and complementing factor HeLa cells. The Journal of Biological Chemistry, 269, 22749-22757.
51. H. Slor, S. Batko, S. G. Khan, T. Sobe, S. Emmert, A. Khadavi, A. Frumkin, D. B. Busch, R. B. Albert and K. H. Kraemer, 2000. Clinical, cellular, and molecular features of an Israeli xeroderma pigmentosum family with a frameshift mutation in the xpc gene: sun protection prolongs life. The Journal of Investigative Dermatology, 115, 974-980.
52. K. Tatsumi, M. Toyoda, T. Hashimoto, J. Furuyama, T. Kurihara, M. Inoue and H. Takebe, 1987. Differential hypersensitivity of xeroderma pigmentosum lymphoblastoid cell lines to ultraviolet light mutagenesis. Carcinogenesis, 8, 53-57.
53. D. J. J. Halley, W. Keijzer, N. G. J. Jaspers, M. F. Niermeijer, W. J. Kleuer, J. Boue, A. Boue and D. Bootsma, 1979. Prental diagnosis of xeroderma pigmentosum (group c) using assays of unscheduled DNA synthesis and posterplication repair. Clinical Genetics, 16, 137-146.
54. S. Emmert, N. Kobayashi, S. G. Khan and K. H. Kraemer, 2000. The xeroderma pigmentosum group c gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts. Proceedings of the National Academy of Science of the United States of America, 97, 2151-2156.
55. D. C. Harrison, A. D. Medhurst, B. C. Bond, C. A. Campbel, R. P. Davis and K. L. Philpott, 2000. The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia --caspase-3 as a case study. Molecular Brain Research, 75, 143-149.
56. T. D. Schmittgen and B. A. Zakrajsek, 2000. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46, 69-81.
57. O. Thellin, W. Zorzi , B. Lakaye, B. De Borman, B. Coumans,G. Hennen, T. Grisar, A. Igout and E. Heinen, 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 75, 291-295.
58. A. J. Cole, D. W. Saffen, J. M. Barabanand and P. F. Worley, 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature, 340, 474-476.
59. M. Schmitt-Ney and J. F. Habener, 2000. CHOP/gadd153 gene expression response to cellular stresses inhibited by prior exposure to ultraviolet light wavelength band C (UVC). The Journal of Biologigal Chemistry, 275, 40839-40845.
60. J. D. Luethy, J. Fargnoli, J. S. Park, A. J. Fornace Jr and N. J. Holbrook, 1990. Isolation and characterization of the hamster gadd153 gene. The Journal of Biological Chemistry, 265, 16521-16526.
61. X. Z. Wang and D. Ron, 1996. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science, 272, 1347-1348.
62. X. Z. Wang, B. Lawson, J. W. Brewer, H. Zinszner, A. Sanjay, L. J. Mi, R. Boorstein, G. Kreibich, L. M. Hendershot and D. Ron, 1996. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Molecular and Cellular Biology, 16, 4273-4280.
63. F. Carrier, Q. Zhan, I. Alamo, F. Hanaoka and A. J. Fornace Jr, 1998. Evidence for distinct kinase-mediated pathyways in GADD gene responses. Biochemical Pharmacology, 55, 853-861.
64. A. Johnsson, C. Strand and G. Los, 1999. Expression of GADD153 in tumor cells and stromal cells from xenografted tumors in nude mice treated with cisplatin: correlations with cisplatin-DNA adducts. Cancer Chemotherapy and Pharmacology, 43, 348-52.
65. M. Matsumoto, M. Minami, K. Takeda, Y. Sakao and S. Akira, 1996 . Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. Federation of European Biochemical Societies letters, 359, 143-147.
66. T. C. Murphy, N. R. Woods and A. J. Ickson, 2001 . Expression of the transcription factor GADD153 is an indicator of apoptosis for recombinant Chinese hamster ovary (CHO) cells. Biotechnology and Bioengineering, 75, 621-629.
67. M. B. Kastan, Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V.
Walsh, B. S. Plunkett, B. Vogelstein and A. J. Fornace Jr, 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 71, 587-597.
68. F. Carries, M. L. Smith, I. Bae, K. E. Kilpatrick, T. J. Lansing, C. Y. Chen, M. Engelstein, S. H. Friend, W. D. Henner, T. M. Gilmert, M. B. Kastan and A. J. Fornace Jr, 1994. Characterization of human GADD45, a p53-regulated protein. The Journal of Biological Chemistry, 269, 32672-32677.
69. M. L. Smith, J. M. Ford, M. C. Hollander, R. A. Bortnick, S. A. Amundson, Y. R. Seo, C. X. Deng, P. C. Hanawalt and A. J. Fornace Jr, 2000. P53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Molecular and Cellular Biology, 20, 3705–3714.
70. L. Li, E.S. Bales, C.A. Peterson and R.J. Legerski, 1993. Characterization of molecular defects in xeroderma pigmentosum group c. Nature Genetics, 5, 413-417.
71. F. Carrier, P. T. Georgel, P. Pourquier, M. Blake, H. U. Kontny, M. J. Antinore, M. Gariboldi, T. G. Myers, J. N. Weinstein, Y. Pommier and A. J. Fornace Jr, 1999. GADD45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Molecular and Cellular Biology, 19, 1673–1685.
72. H. Tran, A. Brunet, J. M. Grenier, S. R. Datta, A. J. Fornace Jr., P. S. DiStefano, L. W. Chiang and M. E. Greenberg, 2002. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the GADD45 Protein. Science, 296, 530-534.
73. M. A. Santucci, A. Ripalti, M. C. Paola, A. M. Mianulli, E. Iacurti, F. Campanini, B. Gamberi and S. Tura, 1999. Procedure for the quantitation of GADD45 expression levels in clonal hematopoietic progenitor cells by competitive polymerase chain reaction. Clinical Biochemistry, 32, 1-8.
74. M. Vairapand, N. Azam, A. G. Balliet, B. Hoffman and D. A. Liebermann, 2000. Characterization of MyD118, GADD45, and proliferating cell nuclear antiage (PCNA) interacting Domains. The Journal of Biological Chemistry, 275, 16810-16819.
75. M. L. Smith, I. T. Chen, Q. Zhan, I. Bae, C. Y. Chen, T. M. Gilmer, M. B. Kastan, P. M. O’Connor, A. J. Jr Fornace, 1994. Interaction of the p53-regulated protein gadd45 with proliferating cell nuclear antigen. Science, 266, 1376-1380.