| 研究生: |
林芳民 Lin, Fang-Ming |
|---|---|
| 論文名稱: |
機械手臂之適應H∞控制設計 The Adaptive-H∞ Control Design on Robot Manipulators |
| 指導教授: |
黃正能
Huang, Cheng-Neng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 適應控制 、變異漸進法 、尤拉-拉格朗其法 、H∞控制 |
| 外文關鍵詞: | Euler-Lagrange method, H∞ control, Variation approach, Adaptive control |
| 相關次數: | 點閱:122 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業不斷發展,工廠也邁向生產自動化方向。在生產自動化中,為了能提升生產速度,提高產品品質以增加生產競爭力,機械臂成了工廠製造流程中,不可或缺的生產設備。機械臂能夠替代許多以往人力所從事的危險和單調但卻需要高度精密的工作,同時也幫助工廠節省生產成本。
機械臂為一個高度非線性,並且為多輸入多輸出系統;同時機械臂需要能適用在多種不同環境,因此考慮其受到的各種外來干擾,以及系統的參數性質,為機械臂控制研究中一個重要的課題;外來干擾以及系統參數變動或不確定性,將可能導致系統控制效能下降,甚至導致系統不穩定;本文將利用尤拉-拉格朗其法所推導出的機械臂系統,並且在具有外擾以及參數不確定性的情況之下,提出一個由適應參數更新律以及具有抑制外擾能力的 控制器,使的機械臂追蹤誤差能夠漸進收斂至零,已達到實際機械臂控制目的。
最後本文將藉由一個雙關節軸機械臂的電腦模擬作為控制對象,已驗證所設計的適應 控制器之控制情形;並且由模擬結果可知,控制器在適當的參數選取之下,系統具有良好的追蹤能力,同時利用兩個不同的參考輸入,觀察控制器的追蹤情形,可知所設計的適應 控制器均確實的追蹤到所要求的路徑,並證實控制器確實為具有壓縮外擾的控制器。
With the growth of industrial development, the manufacturers change their manufacturing process to the production type of automatic manufacturing, so that they are able to promote their efficiency in production and to improve the quality of their products. In automatic manufacturing process, robot manipulators play essential roles and do the dangerous and repeated works with high precision in quality to cut down the production costs. Robot manipulators usually contain high nonlinearity in their dynamics and they are also classified as multi-input multi-output (MIMO) systems. Besides, based on the fact that robots are adopted in various environments, the rejection of external disturbances and parameter variation in the system becomes an important issue, which will be discussed in this research. Moreover, the external disturbances and parameter perturbation or uncertainties would lead to decrease the system performance or make the system become unstable. A hybrid adaptive-H∞ control, which is composed of the parameter-adaptive law and the control law, is proposed in this research to solve the disturbance and parameter-variation problems in robot manipulators. A two-link robot manipulator is adopted in computer simulation to attest the feasibility of the proposed adaptive-H∞ controller. The simulation results show that the tracing errors will asymptotically converge to zero in the presence of various system uncertainties. The simulation results also show that under the appropriate parameters chosen in this thesis, the system can effectively reject the plant uncertainties to achieve good tracking performance.
[1] Abdallah, C., Dawson, D., Dorato, P. and Jamshidi, M.,
“Survey of robust control of rigid robots,”IEEE
Control Systems, Vol. Mag. 11, pp. 24-30, 1991.
[2] Ball, J.A., Helton, J.W. and Walker, M.L., “H∞
control for nonlinear systems with output feedback,”
IEEE Transactions on Automatic Control, Vol. 38, No. 4,
pp. 546-559, April 1993.
[3] Basar, T. and Berhard, P., “H∞- Optimal Control and
Related Minimax Design Problems,” Birkhauser, Boston,
1995.
[4] Battilotti, S., “Sufficient conditions for global
robust stabilization via measurement feedback for some
classes of nonlinear system,” in Proceedings of 33th
Conference on Decision and Control, Vol. 1, pp. 808-
813, Lake Buena Vista, FL, USA, 1994
[5] Chang, Y.C., “An adaptive H∞tracking control for a
class of nonlinear multiple-input-multiple-output
(MIMO) systems,” IEEE Transactions on Automatic
Control, Vol. 46, No. 9, pp. 1432-1437,September 2001.
[6] Chen, B.S., Lee, T.S., and Feng, J.H., “A nonlinear
H∞control design in robotic systems under parameter
perturbation and external disturbance,” International
Journal of Control, Vol. 59, pp. 439-461, 1994.
[7] Chen, B.S., Chang, Y.C. and Lee, T.C., “Adaptive
control in robotic system with H∞tracking
performance,” Automatica, Vol. 33, No. 2, pp. 227-234,
1997.
[8] Dawson, D. M., Qu, Z. and Lewis, F. L., “Hybrid
adaptive-robust control for a robot manipulator,”
International Journal of Adaptive Control and Signal
Processing, Vol. 6, pp. 537-545, 1992.
[9] Doyle, J., Glover, K., Khargonekar, P.P. and Francis,
B.A., “State-space solutions to standard H2 and H∞
control problem,” IEEE Transactions Automatic
Control, Vol. 34, No. 8, pp. 831-847, August 1989.
[10] Francis, B.A., “A course in H∞ control theory,”
Lecture Note in Control and Information Science,
Springer-Verlag, New York, 1988.
[11] Goodwin, G.C. and Mayne, D.Q., “A parameter
estimation perspective of continuous time model
reference adaptive control,” Automatica, Vol. 23,
pp. 57-70, 1987.
[12] Hwang, C.N., “Design of robust controllers for
manipulators,” Journal of National Cheng-Kung
University, Vol. 26, Sci. Eng. & Med. Section, pp.
213-234, 1991.
[13] Hwang, C.N., “Formulation of H2 and H∞ optimal
control problems – A Variational approach,” Journal
of Chinese Institute of Engineers, Vol. 16, No.6, pp.
853-866, 1993.
[14] Hwang, C.N., “A Variational approach to H2 and H∞
control problems for linear nonautonomous system,”
Proc. Natl. Sci. Counc. ROC(A), Vol. 19, No. 5, pp.
408-422, 1995.
[15] Isidori, A. and Astolfi, A., “Nonlinear H∞ -control
via measurement feedback,” Journal of Mathematical
Systems, Estimation and Control, Vol. 2, pp. 31-44,
1992.
[16] Johansson, R., “Quadratic optimization of motion
coordination and control,” IEEE Transactions
Automatic Control, Vol. 35, No. 11, pp. 1197-1208,
November 1990.
[17] Johansson, R., “Adaptive control of robot
manipulator motion,” IEEE Transactions on Robotics
and Automation, Vol. 6, No. 4, pp. 483-490, August
1990.
[18] Ortega, R. and Spong, M.W., “Adaptive motion control
of rigid robots : a tutorial,” in Proceedings of the
27th conference on Decision and Control, Vol. 2, pp.
1575-1584, Austin, Texas, USA, December 1988.
[19] van der Schaft, A.J., “L2 - gain analysis of
nonlinear systems and nonlinear state feedback H∞
control,” IEEE Transactions Automatic Control, Vol.
37, No.6, pp. 770-784, 1992.
[20] Slotine, J.J. E. and Sastry, S.S., “Tracking control
of nonlinear system using sliding surfaces, with
application to robot manipulators,” International
Journal of Control, Vol. 38, No. 2, pp. 465-492, 1983.
[21] Slotine, J.J. E., “Sliding controller design for
nonlinear systems,” International Journal of
Control, Vol. 40, No. 2, pp. 421-434, 1984.
[22] Slotine, J.J. E. and Li, W., “Composite adaptive
control of robot manipulators,” Automatica, Vol. 25,
No.4, pp. 509-519, 1989.
[23] Spong, M.W. and Vidyasagar, M., “Robot Dynamics and
Control,” John Wiley & Sons, Chiehester, 1989.
[24] Stepanenko, Y. and Su, C.Y., “Variable structure
control of robust manipulators with nonlinear sliding
manifolds,” International Journal of Control, Vol.
58, pp. 285-300, 1993.
[25] 黃正光、黃建生,”機械手臂路徑模擬及適應性控制之研
究”, 中原大學機械工程研究所碩士論文,1989。
[26] 陳逢時,”機械人原理、應用與實例”,道明出版社,1993。
[27] 楊憲東、葉芳柏, “線性與非線性H∞控制理論”,全華科技
圖書股份公司,1997。
[28] 陳盈男、黃正能,”多變數適應性模糊H∞控制器之研究與其
在機械臂上之應用。”,國立成功大學造船暨船舶機械工程研
究所碩士論文,2001。
[29] 謝秉瀓、黃正能,”非線性多變數適應- H∞控制器之設計研
究”,國立成功大學系統暨船舶機電工程研究所碩士論文,
2005。