簡易檢索 / 詳目顯示

研究生: 陳暐智
Chen, Wei-Chih
論文名稱: 金屬/氧化物界面對金屬/氧化物/氧化銦錫記憶體元件電阻轉換行為之影響
Influences of metal/oxide interface on the resistive switching behavior in metal/oxide/ITO memory devices
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 電阻式記憶體氧化鉭氧化鋅界面
外文關鍵詞: RRAM, TaOx, ZnO, interface
相關次數: 點閱:90下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以溶液法製備之氧化鋅奈米顆粒 (ZnO NPs) 和磁控濺鍍的氧化鉭(TaOX) 做為電阻式記憶體元件的介電層,利用旋轉塗佈法將ZnO NPs旋塗於ITO玻璃基板上,利用物理氣相沈積法將TaOX沉積於Pt基板和ITO玻璃基板,並沉積鋁(Al)、鉭(Ta)做為上電極,製備Ta/TaOX/Pt、Ta/TaOX/ITO、Ta/ZnO NPs/ITO和Al/ZnO NPs/ITO四種電阻式記憶體元件,探討不同上電極材料或下電極材料對電阻式記憶體元件電性的影響。藉由分析TaOX-bsaed元件的電性結果,建立TaOX-bsaed元件的電阻轉換機制,並定義ITO下電極與Pt下電極的角色差異性。基於TaOX-bsaed元件的電阻轉換機制,藉以探討ZnO NPs-based元件的電阻轉換效應,試圖瞭解ZnO NPs-based電阻式記憶體元件的電阻轉換機制。
    在材料分析方面,本實驗利用X光光電子能譜儀(XPS),分析上電極與ZnO NPs介電層的界面以及介電層內部,而得知界面周遭和介電層內部的元素鍵結形態;利用穿透式電子顯微鏡(TEM),確認電阻式記憶體元件各層薄膜的厚度及觀察ZnO NPs介電層的結晶程度。在元件電性量測方面,本實驗利用精密半導體參數分析儀(Agilent 4156C) 量測電阻式記憶體元件的電流-電壓特性曲線及阻態穩定時間。
    XPS結果顯示,上電極材料在接近介電層的位置,會有上電極金屬的氧化物訊號出現,代表上電極與介電層之間有一層金屬電極氧化物的界面層。由TEM結果得知溶液法製備之ZnO NPs,其顆粒粒徑大約為3~5 nm,且每個ZnO NP均為單晶,經旋轉塗佈而堆疊出多晶的ZnO NPs薄膜。另外,實驗室之前的研究顯示,濺鍍的TaOX薄膜為非晶質態。
    電性分析結果顯示,正常運作的TaOX-based元件屬於“正偏壓寫入,負偏壓抹除”的雙極性電阻轉換行為。其差異為Ta/TaOX/Pt元件可正偏壓寫入,也可以負偏壓寫入,但是只有負偏壓可以抹除,但Ta/TaOX/ITO元件只能以正偏壓寫入負偏壓抹除。ZnO NPs-based元件也屬於雙極性電阻轉換行為,但其寫入/抹除的偏壓極性不同,Ta/ZnO NPs/ITO和Al/ZnO NPs/ITO元件都只能以“負偏壓寫入,正偏壓抹除”。ZnO NPs-based元件元件具有操作電壓小之特性,從高電阻態(HRS) 轉換成低電阻態 (LRS) 的臨界電壓(VSet)約為-0.7 V,而從LRS轉換成HRS的臨界電壓(VReset) 約為+0.2 V;相較之下,TaOX-based元件的VSet和VReset均大於ZnO NPs-based元件,Ta/TaOX/Pt元件Ta/TaOX/ITO元件的VSet分別為4.85 V、1.52 V,而VReset約為-1.0 V。
    藉由TaOX-based元件使用兩種下電極材料,ZnO NPs-based元件使用兩種上電極材料,獲得四組不同的電流-電壓特性曲線。透過分析元件的電流-電壓特性曲線以及XPS的結果,建立TaOX-based元件與ZnO NPs-based元件的電阻轉換機制,並推論出上電極與介電層的界面以及下電極與介電層的界面,在電阻轉換機中所扮演的重要角色。

    In this study, we have prepared tantalum oxide (TaOX) thin films by reactive sputtering from tantalum (Ta) target on Pt/SiO2 and ITO/glass substrates, as well as zinc oxide nanoparticles (ZnO NPs) thin films by spin-coating with the ZnO NPs synthesized via solution process on ITO/glass substrate. In order to investigate the influences of top electrode and bottom electrode materials on the resistive switching behavior, we also deposited tantalum by reactive sputtering and aluminum by thermal evaporation as top electrodes to fabricate Ta/TaOX/Pt, Ta/TaOX/ITO, Ta/ZnO NPs/ITO, and Al/ZnO NPs/ITO resistive random access memory devices.We first analyze the I-V characteristics to construct the resistive switching mechanism of TaOX-based devices and define the difference between Pt and ITO bottom electrode. Then, on the basis of the resistive switching mechanism of TaOX-based devices, we try to develop the resistive switching mechanism of ZnO NPs-based devices.
    Regarding to the material characteristics and electrical properties, X-ray photoelectron spectroscopy (XPS) is used to analyze the interface between top electrode and ZnO NPs film to acquire the chemical bonding status of the interface. The thickness of thin films in resistive random access memory devices and the crystallinity of the ZnO NPs film are examined by transmission electron microscopy. Finally, the electrical properties of resistive random access memory devices are measured by precision semiconductor parameter analyzer (Agilent 4156C).
    XPS results suggest that the top electrode forms an oxide interlayer adjacent to the active layer. TEM images reveal that the solution-processed ZnO NPs film is composed of crystalline ZnO grains with random orientations, of which the grain size is around 3 to 5 nm.
    The I-V measurement shows that TaOX-based devices basically perform the "positive bias set and negative bias reset" bipolar resistive switching behavior. However, Ta/TaOX/Pt device can be set by applying either positive or negative bias, but can only be reset by negative bias. In contrast, Ta/TaOX/ITO device can only be operated under the "positive bias set and negative bias reset" condition.
    ZnO NPs-based devices also perform the bipolar resistive switching behavior but the switching polarity is different from that of TaOX-based devices. Both Ta/ZnO NPs/ITO and Al/ZnO NPs/ITO devices can work only under "negative bias set and positive bias reset" condition. ZnO NPs-based devices have the advantage of low operation voltages, which is about -0.7 V from HRS to LRS (VSet) and about 0.2 V from LRS to HRS (VReset). However, the operation voltages of TaOX-based devices are much larger in comparison to that of ZnO NPs-based devices. The VSet of Ta/TaOX/Pt and Ta/TaOX/ITO are 4.85 V and 1.52 V, respectively; the VReset of both TaOX-based devices are about -1.0 V.
    We obtain four groups of I-V characteristic curves under different operation polarities by using two bottom electrodes in TaOX-based devices and using two top electrodes in ZnO NPs-based devices. The individual resistive switching mechanisms in TaOX-based devices and ZnO NPs-based devices are proposed based on the inter-correlation of I-V characteristic curves and XPS results. Accordingly, we have acquired that the interfaces between the top electrodes, as well as the bottom electrodes, and active layer play important roles in the resistive switching mechanism.

    第 1 章 緒論 1 1.1 前言 1 1.2 研究目的與動機 5 第 2 章 理論基礎 6 2-1 次世代非揮發性記憶體簡介 6 2-2 電阻式隨機存取記憶體(RRAM) 13 2-2-1 電流-電壓特性曲線 13 2-2-2 電阻轉換機制 17 2-3氧化鋅 (ZnO) 應用於電阻式記憶體之研究 22 2-4 介電層電流傳導機制 25 2-4-1 穿隧 (Tunneling) 26 2-4-2 蕭特基發射 (Schottky emission)/ 熱離子發射 (Thermionic emission) 27 2-4-3夫倫克爾-普爾發射 (Frenkel- Poole emission) 27 2-4-4 歐姆效應 (Ohmic) 28 2-4-5 離子傳導 (Ionic conduction) 28 2-4-6 空間電荷限制電流 (Space-charge-limited current) 29 第 3 章 實驗方法與步驟 31 3-1 實驗材料 31 3-1-1 基板材料 31 3-1-2 金屬電極 31 3-1-3 實驗使用氣氛 32 3-1-4 實驗相關藥品與耗材 32 3-2 實驗設備 34 3-2-1 薄膜濺鍍系統 (Sputter System) 34 3-2-2 薄膜蒸鍍系統 (Thermal Evaporation System) 34 3-2-3 乾式熱氧化系統 (Dry Oxidation System) 34 3-3 實驗流程 35 3-3-1 Pt基板製備 35 3-3-2 ITO基板清洗 37 3-3-3 氧化鋅奈米顆粒製備 37 3-3-4 氧化鉭電阻式記憶體元件製備 37 3-3-5 氧化鋅奈米顆粒電阻式記憶體元件製備 37 3-4 分析儀器 39 3-4-1 表面粗度儀 (α-step) 39 3-4-2 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 39 3-4-3 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 40 3-4-4 精密半導體參數分析儀 (Precision Semiconductor Parameter Analyzer) 40 第 4 章 結果與討論 41 4-1 試片命名與結構 41 4-2 TaOX-based電阻式記憶體元件 46 4-2a Ta/TaOX/Pt元件 46 4-2b Ta/TaOX/ITO元件 53 4-2c TaOX-based元件電阻轉換機制 60 4-3 ZnO NPs-based電阻式記憶體元件 71 4-3a Ta/ZnO NPs/ITO元件 71 4-3b Al/ZnO NPs/ITO元件 78 4-3c ZnO NPs-based元件電阻轉換機制 85 4-4 各元件的電性比較 99 第 5 章 結論 107 第 6 章 參考文獻 109

    [1] "The McClean Report", IC insights, Inc., Scottsdale, Arizona USA (2013)
    [2] The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 2012), Emerging Research Devices Section
    http://www.itrs.net/report.html
    [3] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges", Advanced Materials, 21, 2632 (2009).
    [4] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, "On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt", Applied Physics Letters, 93, 223506 (2008).
    [5] L. Yang, C. Kuegeler, K. Szot, A. Ruediger, and R. Waser, "The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy", Applied Physics Letters, 95, 013109 (2009).
    [6] S. R. Lee, K. Char, D. C. Kim, R. Jung, S. Seo, X. S. Li, G.-S. Park, and I. K. Yoo, "Resistive memory switching in epitaxially grown NiO", Applied Physics Letters, 91, 202115 (2007).
    [7] M. Fujimotoa, H. Koyama, Y. Nishi, and T. Suzuki, "Resistive switching properties of high crystallinity and low-resistance Pr0.7Ca0.3MnO3 thin film with point-contacted Ag electrodes", Applied Physics Letters, 91, 223504 (2007).
    [8] D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory", Nature Nanotechnology, 5, 148 (2010).
    [9] A. Sawa, "Resistive switching in transition metal oxides", Materials Today, 11, 28 (2008).
    [10] S. Balatti, S. Larentis, D. C. Gilmer, and D. Ielmini, " Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament", Advanced Materials, 25, 1474 (2013).
    [11] D. S. Jeong, H. Schroeder, and R. Waser, "Impedance spectroscopy of TiO2 thin films showing resistive switching", Applied Physics Letters, 89, 082909 (2006).
    [12] M. Fujimoto, H. Koyama, S. Kobayashi, Y. Tamai, N. Awaya, Y. Nishi, and T.Suzuki, "Resistivity and resistive switching properties of Pr0.7Ca0.3MnO3 thin films", Applied Physics Letters, 89, 243504 (2006).
    [13] D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-I. Chung, J. T. Moon, and B. I. Ryu, "Electrical observations of filamentary conductions for the resistive memory switching in NiO films", Applied Physics Letters, 88, 202102 (2006).
    [14] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza, "Switching characteristics of Cu2O metal-insulator-metal resistive memory", Applied Physics Letters, 91, 123517 (2007).
    [15] H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M.-J. Tsai, and C. Lien, "Electrical evidence of unstable anodic interface in Ru/HfOX/TiN unipolar resistive memory", Applied Physics Letters, 92, 142911 (2008).
    [16] T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, "Electronic transport in Ta2O5 resistive switch", Applied Physics Letters, 91, 092110 (2007).
    [17] M. Villafuerte, S. P. Heluani, G. Juárez, G. Simonelli, G. Braunstein, and S. Duhalde, "Electric-pulse-induced reversible resistance in doped zinc oxide thin films", Applied Physics Letters, 90, 052105 (2007).
    [18] W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications", Applied Physics Letters, 92, 022110 (2008).
    [19] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, "Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories", Applied Physics Letters, 92, 232112 (2008).
    [20] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application", Nano Letters, 9, 1636 (2009).
    [21] C.-C. Lin, Z.-L. Tseng, K.-Y. Lo, C.-Y. Huang, C.-S. Hong, S.-Y. Chu, C.-C. Chang, and C.-J. Wu, "Unipolar resistive switching behavior of Pt/LiXZn1-XO/Pt resistive random access memory devices controlled by various defect types", Applied Physics Letters, 101, 203501 (2012).
    [22] W.-Y. Chang, C.-A. Lin, J.-H. He, and T.-B. Wu, "Resistive switching behaviors of ZnO nanorod layers", Applied Physics Letters, 96, 242109 (2010).
    [23] H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, "Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms", Applied Physics Letters, 96, 192113 (2010).
    [24] J.-J. Ke, Z.-J. Liu, C.-F. Kang, S.-J. Lin, and J.-H. He, "Surface effect on resistive switching behaviors of ZnO", Applied Physics Letters, 99, 192106 (2011).
    [25] Z.-J. Liu, J.-C. Chou, S.-Y. Wei, J.-Y. Gan, and T.‐R. Yew, "Improved Resistive Switching of Textured ZnO Thin Films Grown on Ru Electrodes", IEEE Electron Device Letters, 32, 1728 (2011).
    [26] V. Sh. Yalishev, Y. S. Kim, B. H. Park, and Sh. U. Yuldashev, "Resistance states dependence of photoluminescence in Ag/ZnO/Pt structures", Applied Physics Letters, 99, 012101 (2011).
    [27] F. Zhuge, S. Peng, C. He, X. Zhu, X. Chen, Y. Liu, and R.-W. Li, "Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments", Nanotechnology, 22, 275204 (2011).
    [28] V. Sh. Yalishev, Sh. U. Yuldashev, Y. S. Kim, and B. H. Park, "The role of zinc vacancies in bipolar resistance switching of Ag/ZnO/Pt memory structures", Nanotechnology, 23, 375201 (2012).
    [29] S. Peng, F. Zhuge, X. Chen, X. Zhu, B. Hu, L. Pan, B. Chen, and R.-W. Li, "Mechanism for resistive switching in an oxide-based electrochemical metallization memory", Applied Physics Letters, 100, 072101 (2012).
    [30] J. Zhang, H. Yang, Q.-L. Zhang, S. Dong, and J. K. Luo, "Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition", Applied Physics Letters, 102, 012113 (2013).
    [31] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, and H. Hwang, "Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures", Applied Physics Letters, 90, 042107 (2007).
    [32] T. Harada, I. Ohkubo, K. Tsubouchi, H. Kumigashira, T. Ohnishi, M. Lippmaa, Y. Matsumoto, H. Koinuma, and M. Oshima, "Trap-controlled space-charge-limited current mechanism in resistance switching at Al/Pr0.7Ca0.3MnO3 interface", Applied Physics Letters, 92, 222113 (2008).
    [33] Q. Liu, W. Guan, S. Long, R. Jia, J. Chen, and M. Liu, "Resistive switching memory effect of ZrO2 films with Zr+ implanted", Applied Physics Letters, 92, 012117 (2008).
    [34] K. J. Yoon, M. H. Lee, G. H. Kim, S. J. Song, J. Y. Seok, S. Han, J. H. Yoon, K. M. Kim, and C. S. Hwang, "Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell", Nanotechnology, 23, 185202 (2012).
    [35] J.-K. Lee, S. Jung, J. Park, S.-W. Chung, J. S. Roh, S.-J. Hong, H. Cho, H.-I. Kwon, C. H. Park, B.-G. Park, and J.-H. Lee, "Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices", Applied Physics Letters, 101, 103506 (2012).
    [36] S. M. Sze and K. K. Ng, Physic of Semiconductor Devices. New Jersey: Wiley,
    p. 137, (2007).
    [37] S.K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K.-Y. Jen, "Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer", Applied Physics Letters, 92, 253301 (2008).
    [38] H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, A. K.-Y. Jen, "Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes", Advanced Materials, 20, 2376 (2008).
    [39] Y.-C. Chen, Y.-L. Chung, B.-T. Chen, W.-C. Chen, and J.-S. Chen, " Revelation on the Interrelated Mechanism of Polarity-Dependent and Multilevel Resistive Switching in TaOX-Based Memory Devices", The Journal of Physical Chemistry C, 117, 5758 (2013).
    [40] C. W. Jae, I. Akio, F. Hideki, T. Tsuyoshi, K. J. N., H. Michikazu. K. Maki, M. Yasumichi, and D. Kazunari, "Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods", The Journal of Physical Chemistry B, 107, 1798 (2003).
    [41] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data", Physical Electronics Inc., Minnesota, 1995.
    [42] O. Kerrec, D. Devilliers, H. Groult, and P. Marcus, "Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS", Materials Science and Engineering: B, 55, 134 (1988).
    [43] S. Kiyoshi, I. Hisao, O. Yukio, and S. Kazuhiko, "Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies", Journal of Applied Physics, 87, 295 (2000).
    [44] J.-C. Wang, W.-T. Weng, M.-Y. Tsai, M.-K. Lee, S.-F. Horng, T.-P. Perng, C.-C. Kei, C.-C. Yuc, and H.-F. Meng, "Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer", Journal of Materials Chemistry, 20, 862 (2010).

    無法下載圖示 校內:2018-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE