| 研究生: |
嚴月君 Yen, Yueh-chun |
|---|---|
| 論文名稱: |
鎳鈦矯正線及矯正托架在應力狀態下腐蝕性質之研究 Corrosion behavior of orthodontic archwire coupled to bracket under bending stress |
| 指導教授: |
張川陽
Chang, Chuan-yang 李澤民 Lee, Tzer-min 劉佳觀 Liu, Jia-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 腐蝕 、離子釋出 、應力 、鎳鈦線 、矯正托架 |
| 外文關鍵詞: | ion release, stress, corrosion, bracket, NiTi wire |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用矯正托架合併矯正線是目前矯正牙齒移動的主流。現在市面上也有多種材料可供選擇。但人體口腔是酸性環境,且含有數百種微生物及酵素組成,是一極容易產生腐蝕反應的環境。在矯正治療時期,由於口腔內存在矯正線和矯正托架兩種以上不同金屬同時也處於應力狀態下,所以可能產生伽凡尼腐蝕和應力腐蝕。由於先前實驗只探討矯正托架合併矯正線之伽凡尼腐蝕或應力狀態下之矯正線的應力腐蝕。因此本研究目的為探討不鏽鋼矯正托架合併鎳鈦矯正線在應力狀態下的腐蝕性質。首先對鎳鈦線合併矯正托架進行循環動電位試驗來計算各項腐蝕參數,實驗皆控制在攝氏37度,酸鹼值再分為2和5兩組以模擬人體口腔環境,並藉掃瞄式電子顯微鏡分析表面型態。結果發現經試驗的矯正托架和鎳鈦線接觸處確實在表面呈現不規則性,腐蝕機制也受應力影響,尤其在矯正托架的應力區更出現明顯的孔穴腐蝕。此外應力組的鈍化區電流密度也較高。而且兩種不同鎳鈦線有不同的腐蝕機轉。在定電位試驗中,本實驗也觀察到因鈍化層破壞而造成電流密度上升的趨勢。鈍化層是提供生物相容性很重要的一環,一旦其遭受壞,將導致更多有害離子釋出。我們也於離子釋出實驗中發現,應力存在的確會有較多鎳離子釋出。在本研究中,我們確實發現應力對不鏽鋼矯正托架合併鎳鈦矯正線於臨床矯正應用扮演一重要角色,因此在臨床操作上不能忽視應力所造成的影響。對金屬矯正裝置的防蝕設計,將是目前矯正材料發展一大趨勢。
Bracket coupled to wire systems are commonly used in modern orthodontics to move teeth. Practitioners can choose from a wide range of wires and brackets made from different alloys. Oral environment is a particularly suitable environment for corrosive attack on metals as there exist various microorganisms and enzymes in mouth. In orthodontic treatment, not only galvanic interaction commonly exists between the archwire and brackets but also its stress will induce corrosion process. The aim of our study is to provide a quantitative assessment of the galvanic corrosion behavior of archwire alloys coupled to bracket alloys under the effect of stress, then to analyze the oxide layer of wire, and finally to detect the amount of nickel ion release from galvanic and stress corrosion. All of our experiments were performed at 37℃ with modified Fusayama artificial saliva with pH 2 and 5, respectively. At first, cyclic potentiodynamic test was carried out to gain corrosion parameters and surface topography was analyzed by means of scanning electronic microscopy (SEM) of nickel titanium wire coupled to bracket. The current density in passive region under stress condition was greater than that of unstressed specimens. Up to present, in the absence of stress, the corrosion mechanism in Nitinol Classic® and Sentalloy® was dominated by uniform corrosion; in brackets, two corrosion patterns were noted, including pitting corrosion in wing and grain boundary as well as crevice corrosion in the slot. In the presence of stress, Sentalloy® showed uniform corrosion, whereas Nitinol Classic® has uniform and pitting corrosion at stress area, no mater if wing or slot in brackets were of pitting corrosion and grain boundary corrosion. In potentiostatic test under the stimulated oral potential, the passive film of bracket and wire were spoiled. The current density in passive region was found unstable and higher in loaded mode. Greater release of nickel ion from loaded specimen was evident. We can conclude that the more the acidity, the more easily the corrosion reaction initiates, as well as stress can accelerate the corrosion rate.
1.Andreasen GF, Hilleman TB (1971). An evaluation of 55 cobalt substituted nitinol wire for use in orthodontics. J Am Dent Assoc 82:1373-1375.
2.Andreasen GF, Morrow RE (1978). Laboratory and clinical analyses of nitinol wire. Am J Orthod 73:142-151.
3.Barrett RD, Bishara SE, Quinn JK (1993). Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. Am J Orthod Dentofac Orthop 103:8-14.
4.Birte Melsen, Filleul MP, L J (1997). Torsional properties of Ni-Ti and copper Ni-Ti wires: the effect of temperature on physical properties. Eur J Orthod 19:637-46.
5.Boere G (1995). Influence of fluoride on titanium in an acidic environment measured by polarization resistance technique. J Appl Biomater 6:283-288.
6.Bradford SA (1993). Corrosion control: Van Nostrand Reinhold.
7.Brantley WA, Eliades T (2001). Orthodontic materials: scientific and clinical aspects: Thieme.
8.Buehler WJ, Cross WB (1969). 55-Nitinol unique wire alloy with a memory. Wire J 2:41-9.
9.Dalmau LB, Alberty HC, Parra JS (1984). A study of nickel allergy. J Prosthet Dent 52:116-119.
10.De Souza RM, De Menezes LM (2008). Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. Angle Orthod 78:345-350.
11.Edie JW, Andreasen GF, Zaytoun MP (1981). Surface corrosion of nitinol and stainless steel under clinical conditions. Angle Orthod 51:319-324.
12.Eliades T, Athanasiou AE (2002). In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod 72:222-237.
13.Eliades T, Zinelis S, Eliades G, Athanasiou AE (2002). Nickel content of as-received, retrieved, and recycled stainless steel brackets. Am J Orthod Dentofacial Orthop 122:217-220.
14.Eliades T, Trapalis C, Eliades G, Katsavrias E (2003). Salivary metal levels of orthodontic patients: a novel methodological and analytical approach. Eur J Orthod 25:103-106.
15.Eliades T, Pratsinis H, Kletsas D, Eliades G (2004). Characterization and cytotoxicity of ions released from stainless steel and nickel titanium orthodontic alloys. Am J Orthod Dentofacial Orthop 125:24-29.
16.Eliades T, Zinelis S, Papadopoulos MA, Eliades G, Athanasios AE (2004). Nickel content of as-received and retrieved NiTi and stainless steel archwires: assessing the nickel release hypothesis. Angle Orthod 74:151-154.
17.Ewers G, Greener E (1985). The electrochemical activity of the oral cavity-a new approach. J Oral Rehabil 12:469-476.
18.Faccioni F, Franceschetti P, Cerpelloni M, Fracasso ME (2003). In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Am J Orthod Dentofacial Orthop 124:687-694.
19.Fathi MH, Salehi M, Saatchi A, Mortazavi V, Moosavi SB (2003). In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dent mater 19:188-98.
20.Fontana MG (1987). Corrosion engineering. 3rd ed.: McGraw-Hill, New York.
21.Fors R, Persson M (2006). Nickel in dental plaque and saliva in patients with and without orthodontic appliances. Eur J Orthod 28:292-297.
22.Fujio Miura, Masakuni Mogi, Yoshiaki Ohura, Hamanaka H (1986). The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop 90:1-10.
23.Geis-Gerstorfer J, Weber H (1985). Effect of potassium thiocyanate on corrosion behavior of non-precious metal dental alloys. Dtsch Zahnärztl Z 40:87-91.
24.Genelhu MCLS, Marigo M, Alves-Oliveira LF, Malaquias LCC, Gomez RS (2005). Characterization of nickel-induced allergic contact stomatitis associated with fixed orthodontic appliances. Am J Orthod Dentofac Orthop 128:378-381.
25.Greener EH, Harcourt JK, Lautenschlager EP (1972). Materials science in dentistry: Baltimore:Williams & Wilkins Co.
26.Hamano H (1992). Fundamental studies on biological effects of dental metals: nickel dissolution, toxicity and distributions in cultured cells. J Stomatol Soc 59:456-478.
27.Huang HH (2003). Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. J Biomed Mater Res 66A:829-839.
28.Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, Hsu CC (2003). Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 24:3585-3592.
29.Huang HH (2005a). Variation in corrosion resistance of nickel-titanium wires from different manufacturers. Angle Orthod 75:661-665.
30.Huang HH (2005b). Surface characterizations and corrosion resistance of nickel–titanium orthodontic archwires in artificial saliva of various degrees of acidity. J Biomed Mater Res 74A: 629-639.
31.Huang T, Yen C, Kao C (2001). Comparison of ion release from new and recycled orthodontic brackets. Am J Orthod Dentofacial Orthop 120:68-75.
32.Hunt N, Cunningham S, Golden C (1999). An investigation into the effects of polishing on surface hardness and corrosion of orthodontic archwires. Angle Orthod 69:433-440.
33.Iijima M, Endo K, Yuasa T, Ohno H, Hayashi K, Kakizaki M, Mizoguchi I (2006). Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys. Angle Orthod 76:705-711.
34.Jia W, Beatty MW, Reinhardt RA, Petro TM (1999). Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res 48:488-495.
35.Johnson MJ (1988). The beneficial effects of increasing Cr, Ni, Mo and N on the corrosion resistance of stainless steels. Bioprocess Eng Symp:53-58.
36.Jones DA (1992). Principle and prevention of corrosion: Macmillan Publishing Company.
37.Kang EH, Park SB, Kim HI, Kwon YH (2008). Corrosion-related changes on Ti-based orthodontic brackets in acetic NaF Solutions: surface morphology, microhardness, and element release. Dent Mater J 27:555-560.
38.Khier SE, Brantley WA (1997). In-vitro Corrosion measurements of Ni-Ti wrought alloys. The Saudi Dental Journal 9:14-16.
39.Kim H, Johnson JW (1999). Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod 69:39-44.
40.Kobayashi S, Ohgoe Y, Ozeki K, Hirakuri K, Aoki H (2007). Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. J Mater Sci: Mater Med 18:2263-2268.
41.Kwon YH, Cho HS, Noh DJ, Kim HI, Kim KH (2005). Evaluation of the effect of fluoride-containing acetic aAcid on NiTi wires. J Biomed Mater Res 72B:102-108.
42.Liu IH, Lee TM, Chang CY, Liu CK (2007). Effect of load deflection on corrosion behavior of NiTi wire. J Dent Res 86:539-543.
43.Loesche W (1986). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353-380.
44.Lopez I, Goldberg J, Burstone CJ (1979). Bending characteristics of nitinol wire. Am J Orthod 75:569-575.
45.Matasa C (1995). Attachment corrosion and its testing. J Clin Orthod 29:16-23.
46.Michel D (2004). Does the ransition temperature of Cu-NiTi archwires affect the amount of tooth movement during alignment? Orthod Craniofacial Res 7:21-25.
47.Mueller H, Chen C (1983). Properties of Fe-Cr-Mo wire. J Dent Res 11:71-79.
48.Myrsini S, Darabara LI, Bourithis SZ, Papadimitriou GD (2007). Metallurgical characterization, galvanic corrosion, and ionic release of orthodontic brackets coupled with Ni-Ti archwires. J Biomed Mater Res 81B:126-134.
49.Proffit WR (2007). Contemporary orthodontics. 4th ed.: Mosby.
50.Pun DK, Berzins DW (2008). Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures. Dent mater 24:221-227.
51.Roberge PR (2008). Corrosion engineering: principles and practice. 1st ed.: McGraw-Hill Companies, Inc.
52.Rondelli G, Vicentini B (1999). Localized corrosion behavior in simulated human body fluids of commercial Ni-Ti orthodontic wires. Biomaterials 20:785-792.
53.Rondelli G, Vicentini B (2000). Evaluation by electrochemical tests of the passive film stability of equiatomic NiTi alloy also in presence of stress-induced martensite. J Biomed Mater Res 51:47-54.
54.Sastri VS, Ghali E, Elboujdaini M (2007). Corrosion prevention and protection: practical solutions: John Wiley & Sons, Ltd.
55.Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B (2006). Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. Eur J Orthod 28:298-304.
56.Staffolani N, Damiani F, C. L (1999). Ion release from orthodontic appliances. J Dent 27:449-454.
57.Temesvari E, Racz I (1988). Nickel sensitivity from dental prosthesis. Contact Dermat 18:50-64.
58.Toms AP (1988). The corrosion of orthodontic wire. Eur J Orthod 10:87-97.
59.Tonner RI, Waters NE (1994). The characteristics of superelastic Ni-Ti wire in the three-point bending. Part I: the effect of temperature. Eur J Orthod 16:409-419.
60.Urquidi-MacDonald M, Egan PC (1997). Validation and extrapolation of electrochemical impedance spectroscopy data analysis. Corrosion Reviews 15.
61.Wang J, Li N, Rao G, Han Eh, Ke W (2007). Stress corrosion cracking of NiTi in artificial saliva. Dent mater 23:133-137.
62.Wataha JC, Craig RG, Hanks CT (1991). The release of elements of dental casting alloys into cell-culture medium. J Dental Res 70:1014-1018.
63.Wayman CM (1980). Some applications of shape memory alloys. Bull J Inst Met 19:323-332.
64.Wever DJ, Veldhuizen AG, De Vries J, Busscher HJ, Uges DRA, Van Horn JR (1998). Electrochemical and surface characterization of nickel-titanium alloy. Biomaterials 19:761-769.
65.Widu F, Drescher D, Junker R, Bourauel C (1999). Corrosion and biocompatibility of orthodontic wires. J Mater Sci Mater Med 10:275-281.
66.Yeung KWK, Poon RWY, Chu PK, Chung CY (2007). Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: A comparative study with commonly used medical grade materials. J Biomed Mater Res 82A:403-414.