| 研究生: |
巫浩廷 Wu, Hao-Ting |
|---|---|
| 論文名稱: |
802.11上行系統之非正交多重接取吞吐量分析 Throughput analysis of uplinlk non-orthogonal multiple access in 802.11 system |
| 指導教授: |
蘇淑茵
Sou, Sok-Ian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 非正交多重接取 、傳送功率控制 、功率分配 、飽合系統 、分散式協調功能 |
| 外文關鍵詞: | Non-Orthogonal Multiple Access (NOMA), Trasmit Power control, Power Allocation Algorithm, Saturation System, Distributed Coordination Function |
| 相關次數: | 點閱:159 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非正交多重接取(NOMA)技術是有機會被5G系統採用的技術之一。它允許具有不同通道狀況的多個用戶經由功率或是編碼分成不同等級來共享相同(時間/頻率)資源。在NOMA系統中,連續干擾消除(SIC)技術是接收端解碼信號的關鍵。為了成功將信號區分並解出來,用戶之間的信號功率必須不同。因此各種功率分配方案被提出來。在本論文中,我們在IEEE 802.11飽和系統上提出一個新穎的上行鏈路NOMA功率分配方案,希望提高系統性能。根據IEEE 802.11標準來了解控制發射功率的步驟和流程,基地台會透過相關使用者所傳送的請求幀得到發射功率等訊息,並把相關用戶的發射功率資訊做為演算法的輸入來計算出發射功率限制。除此之外我們使用注水演算法來作調整去增加SIC解出訊號的機會。最後我們將傳統IEEE 802.11分散式協調功能基本機制和以NOMA為技術背景使用在飽和系統上提出的方法進行了比較。
Non-Orthogonal Multiple Access (NOMA) is one of the promising techniques proposed for 5G systems. It allows multiple users with different channel coefficients to share the same (time/frequency) resources by allocating several levels of (power/code) to them. In the NOMA system, the Successive Interference Cancellation (SIC) is the key for the receiver to decode the signal. To successfully distinguish between signals and decode, the signal power between users must be different. Therefore, various transmit power allocation schemes are proposed. In this thesis, a novel uplink NOMA power allocation scheme is intended to uplink non-orthogonal multiple access (NOMA) scenarios on IEEE 802.11 saturation system, aiming to improve system performance. According to the transmit power control procedure which is established in IEEE 802.11 standard, the AP obtains power information in the request frame transmitted by the associated users. An AP may use the transmit power capability of associated users as an input into the algorithm and output the transmit power constraint. We also discuss the water-filling algorithm and add new elements to increase the chances of SIC decodes signals. Finally, we compare the performance of traditional IEEE 802.11 distributed coordination function basic mechanism and NOMA-based with the proposed method on the saturation system.
[1] Y. Sun, D. W. K. Ng, Z. Ding, and R. Schober, “Optimal joint power and sub-carrier allocation for mc-noma systems,” in 2016 IEEE Global Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–6.
[2] P. Parida and S. S. Das, “Power allocation in ofdm based noma systems: A dc pro-gramming approach,” in 2014 IEEE Globecom Workshops (GC Wkshps). IEEE, 2014, pp. 1026–1031.
[3] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5g: solutions, challenges, opportunities, and future research trends,” IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, 2015.
[4] Z.Wei, D. W. K. Ng, and J. Yuan, “Power-efficient resource allocation for mc-noma with statistical channel state information,” in 2016 IEEE Global Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–7.
[5] C.-L. Wang, J.-Y. Chen, and Y.-J. Chen, “Power allocation for a downlink non-orthogonal multiple access system,” IEEE wireless communications letters, vol. 5, no. 5, pp. 532–535, 2016.
[6] Z. Wei, J. Yuan, D. W. K. Ng, M. Elkashlan, and Z. Ding, “A survey of downlink non-orthogonal multiple access for 5g wireless communication networks,” arXiv preprint arXiv:1609.01856, 2016.
[7] P. Xu, Y. Yuan, Z. Ding, X. Dai, and R. Schober, “On the outage performance of non-orthogonal multiple access with 1-bit feedback,” IEEE Transactions on Wireless Communications, vol. 15, no. 10, pp. 6716–6730, 2016.
[8] R. Sun, Y. Wang, X. Wang, and Y. Zhang, “Transceiver design for cooperative non-orthogonal multiple access systems with wireless energy transfer,” IET Communications, vol. 10, no. 15, pp. 1947–1955, 2016.
[9] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, H. V. Poor et al., “Application of non-orthogonal multiple access in lte and 5g networks,” arXiv preprint arXiv:1511.08610, 2015.
[10] H. Zhang, D.-K. Zhang, W.-X. Meng, and C. Li, “User pairing algorithm with sic in non-orthogonal multiple access system,” in 2016 IEEE International Conference on Communications (ICC). IEEE, 2016, pp. 1–6.
[11] L. Yao, J. Mei, H. Long, L. Zhao, and K. Zheng, “A novel multi-user grouping scheme for downlink non-orthogonal multiple access systems,” in 2016 IEEE Wireless Communications and Networking Conference. IEEE, 2016, pp. 1–6.
[12] T. Kramp, R. van Kranenburg, and S. Lange, Introduction to the Internet of Things. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–10. [Online]. Available: https://doi.org/10.1007/978-3-642-40403-0_1
[13] “Ieee standard for wireless lan medium access control (mac) and physical layer (phy) specifications,” IEEE Std 802.11-1997, pp. 1–445, Nov 1997.
[14] K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (noma) with successive interference cancellation for future radio access,” IEICE Transactions on Communications, vol. 98, no. 3, pp. 403–414, 2015.
[15] C.-H. Wang, J.-Y. Lin, and J.-M. Wu, “Resource allocation and user grouping for sum rate and fairness optimization in noma and iot,” in 2018 IEEE Conference on
Standards for Communications and Networking (CSCN). IEEE, 2018, pp. 1–6.
[16] ——, “Joint fairness and sum rate resource allocation for noma communications,” in 2017 IEEE Conference on Standards for Communications and Networking (CSCN). IEEE, 2017, pp. 269–274.
[17] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for gaussian vector multiple-access channels,” IEEE Transactions on Information Theory, vol. 50, no. 1, pp. 145–152, 2004.
[18] A. Benjebbovu, A. Li, Y. Saito, Y. Kishiyama, A. Harada, and T. Nakamura, “System-level performance of downlink noma for future lte enhancements,” in 2013 IEEE Globecom Workshops (GC Wkshps). IEEE, 2013, pp. 66–70.
[19] N. Otao, Y. Kishiyama, and K. Higuchi, “Performance of non-orthogonal multiple access with sic in cellular downlink using proportional fair-based resource allocation,” IEICE Transactions on Communications, vol. 98, no. 2, pp. 344–351,
2015.
[20] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coordination function,” IEEE Journal on selected areas in communications, vol. 18, no. 3, pp. 535–547, 2000.
[21] “Ieee standard for telecommunications and information exchange between systems- lan/man specific requirements - part 11: Wireless medium access control (mac) and physical layer (phy) specifications: High speed physical layer in the 5 ghz band,” IEEE Std 802.11a-1999, pp. 1–102, Dec 1999.
[22] “Ieee standard for information technology– local and metropolitan area networks-specific requirements– part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications - spectrum and transmit power management
extensions in the 5 ghz band in europe,” IEEE Std 802.11h-2003 (Amendment to IEEE Std 802.11, 1999 Edn. (Reaff 2003)), pp. 1–75, Oct 2003.
[23] “Ieee standard for information technologytelecommunications and information exchange between systems local and metropolitan area networksspecific requirements - part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications,” IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012).
校內:2022-09-30公開