| 研究生: |
林郁人 Lin, Yu-Ren |
|---|---|
| 論文名稱: |
六硼化鑭/二氧化矽/金複合奈米粒子之製備及其光熱轉換與催化特性 Fabrication and photothermal conversion and catalytic properties of LaB6/SiO2/Au composite nanoparticles |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 六硼化鑭 、光熱轉換效應 、觸媒催化 |
| 外文關鍵詞: | Lanthanum hexaboride, Photothermal conversion, Catalysis |
| 相關次數: | 點閱:63 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關六硼化鑭/二氧化矽/金複合奈米粒子之製備及其光熱轉換效應與觸媒催化特性之研究。關於此一系列複合奈米粒子之製備,首先以濕式研磨/分散技術將微米級六硼化鑭粉末研磨至奈米級粒子 (LaB6 NPs),然後利用溶膠凝膠法於其表面被覆二氧化矽奈米殼層 (LaB6@SiO2 NPs);接著以(3-氨基丙基)三乙氧基矽烷修飾使其表面氨基化,並結合單分散金奈米粒子以形成金奈米粒子沉積之複合型奈米粒子 (LaB6@SiO2/Au NCs),最後再利用化學還原法將金前驅鹽溶液還原生成連續緻密金奈米殼層以形成金奈米殼層被覆之核殼型奈米粒子 (LaB6@SiO2@Au NPs)。透過穿透式電子顯微 (TEM) 分析、動態光散射 (DLS) 分析、X光繞射 (XRD) 分析、傅立葉轉換紅外光光譜 (FT-IR) 分析、界面電位 (Zeta Potential) 分析及紫外光/可見光/近紅外光分光光譜 (UV/VIS/NIR) 分析觀察可知所得產物之粒子型態、粒徑大小、晶相結構、鍵結型態、界面電位及光學性質,證實可成功製備出分散良好之一系列六硼化鑭/二氧化矽/金複合奈米粒子。六硼化鑭奈米粒子經二氧化矽殼層被覆後,其於近紅外光波長區段範圍仍具有因其表面電漿共振所引發之特性吸收峰及優越光熱轉換效應。當其表面結合之金奈米粒子進一步形成金奈米殼層後,其金奈米粒子之特性吸收峰位置明顯地由520 nm紅位移至近紅外光波長區段範圍,也因此而有效地提升其光熱轉換效率,並且使其可用於作為光熱治療之新穎材料。此外,以表面具有單分散金奈米粒子之複合奈米粒子 (LaB6@SiO2/Au NCs) 作為催化還原對硝基苯酚之觸媒,可發現其於近紅外光照射下,確實有助於催化反應速率的提升,且將其回收再使用,依然保有其觸媒活性。
This thesis concerns the fabrication of lanthanum hexaboride/silica/gold composite nanoparticles and their photothermal conversion and catalytic properties. For their fabrication, lanthanum hexaboride nanoparticles (LaB6 NPs) were obtained by the wet-grinding of LaB6 powder at first. Then, SiO2 nanoshells were coated on their surface by the sol-gel method to yield the LaB6-SiO2 core-shell nanoparticles (LaB6@SiO2 NPs). After modification with (3-Aminopropyl)triethoxysilane (APTES) to generate amino groups on the surface of SiO2 nanoshell, monodisperse Au nanoparticles were attached to form the Au nanoparticles-deposited LaB6@SiO2 nanoparticles (LaB6@SiO2/Au NCs). Finally, Au nanoshells were grown by the chemical reduction of gold precursor to form the Au nanoshell-coated LaB6@SiO2 nanoparticles (LaB6@SiO2@Au NPs). From the characterization of morphology, size, structure, functional group, zeta potential, and optical property by TEM, DLS, XRD, FT-IR, Zeta Potential, and UV/VIS/NIR, the successful fabrication of well-dispersed LaB6@SiO2@Au nanoparticles has been demonstrated. After coating with SiO2 nanoshells, LaB6@SiO2 nanoparticles remained their characteristic absorption peak owing to surface plasmon resonance and excellent photothermal conversion property in the NIR range. When the Au nanoparticles attached on their surface were further form the Au nanoshells, the characteristic absorption peak of Au nanoparticles shifted significantly from 520 nm to the NIR range. This enhanced the photothermal conversion efficiency effectively and made LaB6@SiO2@Au nanoparticles useful as a novel material for photothermal therapy. In addition, using the monodisperse Au nanoparticles-deposited composite nanoparticles (LaB6@SiO2/Au NCs) as the catalyst for the reduction of 4-nitrophenol, it was found that the reaction rate could be raised under NIR irradiation. Also, their catalytic activity could be retained after recycle use several times.
1. K. J. Klabunde, Introduction to Nanotechnology, Nanoscale Materials in Chemistry, Wiley, New York, 1 (2001).
2. 柯揚船、皮特斯壯,聚合物-無機奈米複合材料,五南,台北 (2004)。
3. 劉雪寧、楊治中,納米複合材料的設計與應用,化學通報,62,99124 (1999)。
4. 林芳新、董瑞安,奈米核殼複合粒子的製備及生醫應用,科儀新知,28,1,7 (2006)。
5. 張立德,奈米材料,化學工業,北京 (2000)。
6. 張立德、牟季美,奈米材料和奈米結構,科學,北京 (2001)。
7. 陳東煌,複合奈米粒子,化工資訊與商情,3,58 (2003)。
8. 陳東煌,複合奈米粒子的製備與應用,化工技術,120,180 (2003)。
9. 高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,五南,台北 (2005)。
10. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B, 101, 9463 (1997).
11. S. W. Lin, D. H. Chen, Small, 5, 1 ,72 (2009).
12. P. Audebert, S. Sadki, F. Miomandre, G. Lanneau, R. Frantz, and J. O. Durand, J. Mater. Chem., 12, 1099 (2002).
13. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, Phys. Rev. Lett., 89, 203002 (2002).
14. M. T. Harrison, S. V. Kershaw, M. G. Burt, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, Pure Appl. Chem., 72, 295 (2000).
15. Y. T. Lim, M. Y. Cho, B. S. Choi, Y. W. Noh, and B. H. Chung, Nanotechnology, 19, 375105 (2008).
16. A. Henglein, A. Holzwarth, and P. Mulvaney, J. Phys. Chem., 96, 8700 (1992).
17. A. Henglein, P. Mulvaney, and A. Holzwarth, J. Phys. Chem., 96, 2411 (1992).
18. L. Rivas, S. Sánchez-Cortes, J. V. García-Ramos, and G. Morcillo, Langmuir, 16, 9722 (2000).
19. M. Ohmori, E. Matijevic, J. Colloid Interface Sci., 150, 594 (1992).
20. D. M. Thies-Weesie, A. P. Philipse, Langmuir, 11, 4180 (1995).
21. D. Yang, J. Hu, and S. Fu, J. Phys. Chem. C, 113, 7646 (2009).
22. L. Wang, J. Luo, M. M. Maye, Q. Fan, Q. Rendeng, M. H. Engelhard, C. Wang, Y. Lin, and C. J. Zhong, J. Mater. Chem., 15, 1821 (2005).
23. E. Mine, A. Yamada, Y. Kobayashi, M. Konno, and L. M. Liz-Marzan, J. Colloid Interface Sci., 264, 385 (2003).
24. P. H. Chiu, C. J. Huang, and Y. H. Wang, J. Electrochem. Soc., 155, 10, 183 (2008).
25. S. E. Park, J. W. Lee, S. J. Haam, and S. W. Lee, Bull. Kor. Chem. Soc., 30, 4, 869 (2009).
26. S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, Langmuir, 14, 5396 (1998).
27. L. Zhang, Y. G. Feng, L. Y. Wang, J. Y. Zhang, M. Chen, and D. J. Qian, Mater. Res. Bull., 42, 1457 (2007).
28. J. Xue, C. Wang, and Z. Ma, Mater. Chem. Phys., 105, 419 (2007).
29. M. Bikram, A. M. Gobin, R. E. Whitmire, and J. L. West, J. Controll. Release, 123, 219 (2007).
30. S. Xu, S. Hartvickson, and J. X. Zhao, Langmuir, 24, 14, 7492 (2008).
31. J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, and T. Hyeon, Angew. Chem. Int. Ed., 45, 7754 (2006).
32. C. L. Fang, K. Qian, J. Zhu, S. Wang, X. Lv, and S. H. Yu, Nanotechnology, 19, 125601 (2008).
33. W. C. Huang, P. J. Tsai, and Y. C. Chen, Small, 5, 1, 51 (2009).
34. S. Guo, S. Dong, E. Wang, Chem. Eur. J., 15, 2416 (2009).
35. J. Lee, J. Yang, H. Ko, S. J. Oh, J. Kang, J. H. Son, K. Lee, S. W. Lee, H. G. Yoon, J. S. Suh, Y. M. Huh, and S. Haam, Adv. Funct. Mater., 18, 258 (2008).
36. F. M. Hossain, D. P. Riley, and G. E. Murch, Phys. Rev. B, 72, 235101 (2005).
37. S. Schelm, G. B. Smith, Appl. Phys. Lett., 82, 4346 (2003).
38. A. A. Marchenko, V. V. Cherepanov, D. T. Tarashchenko, Z. I. Kazantseva, and A. G. Naumovets, Surf. Sci., 416, 460 (1998).
39. R. W. Tohnson, A. H. Dannw, J. Phys. Chem., 65, 199 (1961).
40. J. M. Lafferty, J. Appl. Phys., 22, 299 (1951).
41. B. V. Philips Export, JCPD file of LaB6, 34, 0427 (1990).
42. H. Ahmed, A. N. Broers, J. Appl. Phys., 43, 2185 (1972).
43. L. W. Swanson, T. Dickson, Appl. Phys. Lett., 28, 578 (1976).
44. 黃啟祥、林江財,陶瓷材料技術 (下),中華民國產業科技發展協進會與中華民國粉末冶金協會 (1994)。
45. H. E. Gallagher, J. Appl. Phys., 40, 44 (1969).
46. D. H. Templetion, C. H. Dauben, J. Am. Chem. Soc., 76, 5237 (1954).
47. H. Zhang, J. Tang, Q. Zhang, G. Zhao, G. Yang, J. Zhang, O. Zhou, and L. C. Qin, Adv. Mater., 18, 87 (2006).
48. J. Xu, Y. Zhao, and C. Zou, Chem. Phys. Lett., 423, 138 (2006).
49. M. Zhang, L. Yuan, X. Wang, H. Fan, X. Wang, X. Wu, H. Wang, and Y. Qian, J. Solid State Chem., 181, 294 (2008).
50. H. Takeda, H. Kuno, and K. Adachi, J. Am. Ceram. Soc., 91, 2897 (2008).
51. K. Adachi, M. Miratsu, J. Mater. Res., 25, 3, 510 (2010).
52. S. Schelm, G. B. Smith, Appl. Phys. Lett., 82, 4346 (2003).
53. S. Schelm, G. B. Smith, P. D. Garrett, and W. K. Fisher, J. Appl. Phys., 97, 124314 (2005).
54. M. Zhang, L. Yuan, X. Wang, H. Fan, X. Wang, X. Wu, H. Wang, and Y. Qian, J. Solid State Chem., 181, 294 (2008).
55. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday, 2, 1, 18 (2007).
56. F. Y. Cheng, C. T. Chen, and C. S. Yeh, Nanotechnology, 425104 (2009).
57. 董慕愷、陳郁文,奈米金觸媒,科學發展,390,46 (2005)。
58. X. Y. Liu, F. Cheng, Y. Liu, H. J. Liu , and Yu Chen, J. Mater. Chem., 20, 360 (2010).
59. S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S. K. Ghosh, and T. Pal, J. Phys. Chem. C, 111, 4596 (2007).
60. S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal, Langmuir, 26, 4, 2885 (2010).
61. 莊浩宇,二氧化鈦奈米粒子及其金屬核殼型奈米複合材料之製備與應用研究,國立成功大學化學工程學系,研究所博士論文 (2008)。
62. 賴柏宏,六硼化鑭複合奈米粒子的製備及其在生醫上的應用,國立成功大學化學工程學系,研究所碩士論文 (2008)。
63. 陳成家,淺談濕式奈米級研磨/分散技術,工業材料雜誌,237,83 (2006)。
64. J. C. Su, S. Y. Liang, W. L. Liu, and T. C. Jan, J. Manuf. Sci. Eng., 126, 779 (2004).
65. Sol-Gel Technology and Products, http://www.chemat.com/, Chemat Technology Inc.
66. Y. Piao, A. Burns, J. Kim, U. Wiesner, and T. Hyeon, Adv. Funct. Mater., 18, 3745 (2008).
67. Z. Wu, H. Xiang, T. Kim, M. S. Chun, and K. Lee, J. Colloid Interface Sci., 304, 119 (2006).
68. E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, Appl. Surf. Sci., 254, 563 (2007).
69. J. Turkevich, G. Kirn, Science, 169, 870 (1970).
70. A. J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, New York (1980).
71. D. V. Goia, E. Matijevic, New J. Chem., 22, 1203 (1998).
72. G. Schimid, Clusters and colloids: from theory to application, VCH, New York (1994).
73. S. Link, Z. L. Wang, and M. A. El-Sayed, J. Phys. Chem. B, 103, 3529 (1999).
74. 陳毓宏,新穎的奈米粒子合成方法與在生醫上的應用:金銀,金鈀,金,國立成功大學化學系,研究所博士論文 (2003)。
75. P. Mulvaney, Langmuir, 12, 788 (1996).
76. J. C. Weaver, Y. A. Chizmadzhev, Bioelectrochem. Bioenerg., 41, 135 (1996).
77. G. Mie, Ann. Phys., 25, 377 (1908).
78. U. Kreibig, C. V. Z. Fragstein, Phys., 224, 307 (1969).
79. K. Selby, M. Vollmer, J. Masui, V. Kersin, W. A. de Heer, and W. D. Knight, Phys. Rev. B, 40, 5417 (1989).
80. 吳杰儒,奈米微粒雷射熱治療效率提升技術之研發,國立成功大學機械工程學系,研究所碩士論文 (2006)。
81. R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, Phys. Rep., 328, 73 (2000).
82. C. Voisin, N. D. Fatti, D. Christofilos, and F. Valle, J. Phys. Chem. B, 105, 2264 (2001).
83. N. S. Pramana, J. Phys., 63, 1083 (2004).
84. P. M. Tomchuk1, V. V. Kulish, J. Phys. Stud., 8, 127 (2004).
85. 張揚狀,表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應用,國立成功大學化學工程學系,研究所博士論文 (2004)。
86. 陳妙琪,複合鍍TiO2-Ni光觸媒之製造與特性分析,國立交通大學材料科學與工程學系,研究所碩士論文 (2002)。
87. F. Kapteijn, G. B. Marin, and J. A. Moulijn, Catalytic Reaction Engineering, Catalysis: an Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis, Elsevier, Amsterdam, 251 (1993).