研究生: |
伍家均 Wu, Chia-Chun |
---|---|
論文名稱: |
利用無電鍍鎳製備矽基奈米複合材料當作鋰離子電池負極材料之研究 Investigation of Si-based Nanocomposite Anode Materials Utilizing Electroless Nickel Plating for Lithium-ion Batteries |
指導教授: |
劉全璞
Liu, Chuan-Pu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 無電鍍鎳法 、矽化鎳(NiSi2) 、鋰離子電池 、負極材料 |
外文關鍵詞: | electroless nickel plating, nickel silicide(NiSi2), lithium-ion batteries, anode materials |
相關次數: | 點閱:87 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了克服純矽負極材料在電池充放電過程中因破裂所導致電池壽命不佳的問題,本研究利用低成本且具可調控性的無電鍍鎳法並施以熱處理將矽奈米粉末加以改質,成功地製備Si@Ni、Si@NiO與Si@NiSi2等不同的矽基奈米複合材料,並且利用SEM、XRD、TEM、四點量測與電池循環測試系統,系統性地分析彼此間的形貌與結構如何影響其電性與電化學性質。
使用一階段未添加額外還原劑的Self-reducing method製程,在退火前後分別得到的Si@Ni與Si@NiO之複合材料,於TEM影像中可清楚地看見矽因還原鎳離子的同時會氧化並生成一層SiO2,並介於功能性塗層(Ni與NiO)與矽材之間,使得兩者之電化學性質較純矽材料而言雖已有提升但仍不滿意。
倘若使用兩階段的Self-reducing method + Electroless nickel deposition(需添加額外還原劑)製程,在退火後所得到的Si@NiSi2之複合材料,於TEM影像中可看到,因第一階段之短暫製程僅提供Ni達孕核之效,故上述之SiO2生成量不多,再經歷第二階段的晶粒成長與熱處理後,NiSi2於矽表面的包覆性獲得增益並可緩衝矽於充放電過程的激烈體積變化,進而使得電池在0.1 C的充放電速率下歷經70圈測試後,電容值為1391 mAh/g且電容維持率可高達86.6%。
Compared with graphite, a common-used materials for anodes in batteries, silicon (Si) has been proposed to be the most promising choice for next-generation anodes due to its capacity, which is ten times higher than graphite. However, the practical use of Si anode material is impeded by its poor cyclability resulting from the strain induced pulverization cuased by the severe volume change during charge/discharge. In this thesis, we successfully fabricate different functional coating on the Si surface to depreess the tremedous volume change of Si and prolong the batteries life. Si@Ni and Si@NiO nanocomposites were synthesized by one-step (self-reducing method, SR) electroless nickel plating without/with heat treament, and Si@NiSi2 nanocomposites were obtained by two-step (SR + Electroless Nickel deposition, EN) process with heat treament. The charge retention after 100 cycles are estimated to be 58.6% and 68.2% for Si@Ni and Si@NiO electrode, respectively. After 70 cyclic tests, capacity retention of batteries could be significantly improved from 23.4% to 86.6% by replacing pristine-Si with Si@NiSi2 nanocomposite. This results suggest that the NiSi2 could be a competent buffer layer to effectively buffer the volume change of silicon and promote the battery efficiency.
[1] J. M. Tarascon & M. Armand. "Issues and challenges facing rechargeable lithium batteries". Nature 414, 359-367, (2001).
[2] D. Deng, M. G. Kim, J. Y. Lee & J. Cho. "Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries". Energy & Environmental Science 2, 818, (2009).
[3] J. B. Goodenough & Y. Kim. "Challenges for Rechargeable Li Batteries†". Chemistry of Materials 22, 587-603, (2010).
[4] 陳榮志. "鋰電池充電器性能與安全測試之研究". (2009).
[5] M. R. Palacin. "Recent advances in rechargeable battery materials: a chemist's perspective". Chemical Society Reviews 38, 2565-2575, (2009).
[6] L. Li, R. Jacobs, P. Gao, L. Gan, F. Wang, D. Morgan & S. Jin. "Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes". Journal of the American Chemical Society 138, 2838-2848, (2016).
[7] M. Gu, Z. Wang, J. G. Connell, D. E. Perea, L. J. Lauhon, F. Gao & C. Wang. "Electronic origin for the phase transition from amorphous LixSi to crystalline Li15Si4". ACS Nano 7, 6303-6309, (2013).
[8] B. Key, M. Morcrette, J. M. Tarascon & C. P. Grey. "Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms". Journal of the American Chemical Society 133, 503-512, (2011).
[9] X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. T. Picraux, S. Zhang, J. Li, T. Zhu & J. Y. Huang. "In situ atomic-scale imaging of electrochemical lithiation in silicon". Nature Nanotechnology 7, 749-756, (2012).
[10] J. W. Kim, J. H. Ryu, K. T. Lee & S. M. Oh. "Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries". Journal of Power Sources 147, 227-233, (2005).
[11] M. N. Obrovac, L. Christensen, D. B. Le & J. R. Dahn. "Alloy Design for Lithium-Ion Battery Anodes". Journal of The Electrochemical Society 154, A849-A855, (2007).
[12] J. W. Choi & D. Aurbach. "Promise and reality of post-lithium-ion batteries with high energy densities". Nature Reviews Materials 1, 16013, (2016).
[13] C. K. Chan, R. Ruffo, S. S. Hong & Y. Cui. "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes". Journal of Power Sources 189, 1132-1140, (2009).
[14] R. Dedryvère, L. Gireaud, S. Grugeon, S. Laruelle, J. M. Tarascon & D. Gonbeau. "Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study". The Journal of Physical Chemistry B 109, 15868-15875, (2005).
[15] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu & Y. Cui. "Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control". Nature Nanotechnology 7, 310-315, (2012).
[16] H. Kim, M. Seo, M. H. Park & J. Cho. "A critical size of silicon nano-anodes for lithium rechargeable batteries". Angewandte Chemie International Edition in English 49, 2146-2149, (2010).
[17] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu & J. Y. Huang. "Size-dependent fracture of silicon nanoparticles during lithiation". ACS Nano 6, 1522-1531, (2012).
[18] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix & Y. Cui. "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life". Nano Letters 11, 2949-2954, (2011).
[19] A. M. Morales & C. M. Lieber. "A laser ablation method for the synthesis of crystalline semiconductor nanowires". Science 279, 208-211, (1998).
[20] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins & Y. Cui. "High-performance lithium battery anodes using silicon nanowires". Nature Nanotechnology 3, 31-35, (2008).
[21] K. Peng, J. Jie, W. Zhang & S.-T. Lee. "Silicon nanowires for rechargeable lithium-ion battery anodes". Applied Physics Letters 93, 033105, (2008).
[22] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee & J. Zhu. "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles". Advanced Functional Materials 16, 387-394, (2006).
[23] T. Moon, C. Kim & B. Park. "Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries". Journal of Power Sources 155, 391-394, (2006).
[24] B. M. Bang, J.-I. Lee, H. Kim, J. Cho & S. Park. "High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching". Advanced Energy Materials 2, 878-883, (2012).
[25] M. N. Obrovac & V. L. Chevrier. "Alloy negative electrodes for Li-ion batteries". Chemical Reviews 114, 11444-11502, (2014).
[26] S. H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z. P. Guo & H. K. Liu. "Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries". Angewandte Chemie International Edition in English 45, 6896-6899, (2006).
[27] R. Huang, X. Fan, W. Shen & J. Zhu. "Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes". Applied Physics Letters 95, 133119, (2009).
[28] B. Hertzberg, A. Alexeev & G. Yushin. "Deformations in Si−Li Anodes Upon Electrochemical Alloying in Nano-Confined Space". Journal of the American Chemical Society 132, 8548-8549, (2010).
[29] Y. Xu, G. Yin, Y. Ma, P. Zuo & X. Cheng. "Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source". Journal of Materials Chemistry 20, 3216, (2010).
[30] Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken & J. Maier. "Reversible storage of lithium in silver-coated three-dimensional macroporous silicon". Advanced Materials 22, 2247-2250, (2010).
[31] X. Xiao, P. Lu & D. Ahn. "Ultrathin multifunctional oxide coatings for lithium ion batteries". Advanced Materials 23, 3911-3915, (2011).
[32] V. A. Sethuraman, K. Kowolik & V. Srinivasan. "Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries". Journal of Power Sources 196, 393-398, (2011).
[33] M. T. McDowell, S. Woo Lee, C. Wang & Y. Cui. "The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation". Nano Energy 1, 401-410, (2012).
[34] K. Karki, Y. Zhu, Y. Liu, C. F. Sun, L. Hu, Y. Wang, C. Wang & J. Cumings. "Hoop-strong nanotubes for battery electrodes". ACS Nano 7, 8295-8302, (2013).
[35] H. Park, S. Lee, S. Yoo, M. Shin, J. Kim, M. Chun, N. S. Choi & S. Park. "Control of interfacial layers for high-performance porous Si lithium-ion battery anode". ACS Applied Materials & Interfaces 6, 16360-16367, (2014).
[36] T. Cetinkaya, M. Uysal & H. Akbulut. "Electrochemical performance of electroless nickel plated silicon electrodes for Li-ion batteries". Applied Surface Science 334, 94-101, (2015).
[37] B. Predel. "Li-Ni (Lithium-Nickel)". Landolt-Börnstein - Group IV Physical Chemistry 5H, 1-1, (1997).
[38] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang & Y. Cui. "A yolk-shell design for stabilized and scalable li-ion battery alloy anodes". Nano Letters 12, 3315-3321, (2012).
[39] Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu & Y. Cui. "Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes". Nature Energy 1, 15029, (2016).
[40] H. Nakai, T. Kubota, A. Kita & A. Kawashima. "Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes". Journal of The Electrochemical Society 158, A798-A801, (2011).
[41] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström & T. Gustafsson. "Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive". Chemistry of Materials 27, 2591-2599, (2015).
[42] G.-B. Han, J.-N. Lee, J. W. Choi & J.-K. Park. "Tris(pentafluorophenyl) borane as an electrolyte additive for high performance silicon thin film electrodes in lithium ion batteries". Electrochimica Acta 56, 8997-9003, (2011).
[43] G.-B. Han, M.-H. Ryou, K. Y. Cho, Y. M. Lee & J.-K. Park. "Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode". Journal of Power Sources 195, 3709-3714, (2010).
[44] M.-Q. Li, M.-Z. Qu, X.-Y. He & Z.-L. Yu. "Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries". Electrochimica Acta 54, 4506-4513, (2009).
[45] M. Ulldemolins, F. Le Cras, B. Pecquenard, V. P. Phan, L. Martin & H. Martinez. "Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries". Journal of Power Sources 206, 245-252, (2012).
[46] S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui & K. Konno. "Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries". The Journal of Physical Chemistry C 115, 13487-13495, (2011).
[47] B. Koo, H. Kim, Y. Cho, K. T. Lee, N. S. Choi & J. Cho. "A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries". Angewandte Chemie International Edition in English 51, 8762-8767, (2012).
[48] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov & G. Yushin. "A major constituent of brown algae for use in high-capacity Li-ion batteries". Science 334, 75-79, (2011).
[49] J.-H. Kim, H. Kim & H.-J. Sohn. "Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries". Electrochemistry Communications 7, 557-561, (2005).
[50] Y. NuLi, B. Wang, J. Yang, X. Yuan & Z. Ma. "Cu5Si–Si/C composites for lithium-ion battery anodes". Journal of Power Sources 153, 371-374, (2006).
[51] F. M. Courtel, D. Duguay, Y. Abu-Lebdeh & I. J. Davidson. "Investigation of CrSi2 and MoSi2 as anode materials for lithium-ion batteries". Journal of Power Sources 202, 269-275, (2012).
[52] Y. Chen, J. Qian, Y. Cao, H. Yang & X. Ai. "Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries". ACS Applied Materials & Interfaces 4, 3753-3758, (2012).
[53] Y. M. Kim, J. Ahn, S.-H. Yu, D. Y. Chung, K. J. Lee, J.-K. Lee & Y.-E. Sung. "Titanium Silicide Coated Porous Silicon Nanospheres as Anode Materials for Lithium Ion Batteries". Electrochimica Acta 151, 256-262, (2015).
[54] W. Stöber, A. Fink & E. Bohn. "Controlled growth of monodisperse silica spheres in the micron size range". Journal of Colloid and Interface Science 26, 62-69, (1968).
[55] M.-S. Shin, T.-W. Lee, J.-B. Park, S.-H. Lim & S.-M. Lee. "Post-annealing effects on the electrochemical performance of a Si/TiSi2 heteronanostructured anode material prepared by mechanical alloying". Journal of Power Sources 344, 152-159, (2017).
[56] P. Franke & D. Neuschütz. " Ni-Si". Landolt-Börnstein - Group IV Physical Chemistry 19B4, 1-4, (2006).
[57] Y.-N. Zhou, W.-J. Li, H.-J. Chen, C. Liu, L. Zhang & Z. Fu. "Nanostructured NiSi thin films as a new anode material for lithium ion batteries". Electrochemistry Communications 13, 546-549, (2011).
[58] B. Deniz Polat, O. Levent Eryılmaz, Z. Chen, O. Keles & K. Amine. "High capacity anode with well-aligned, ordered NiSi nano-columnar arrays". Nano Energy 13, 781-789, (2015).
[59] H. L. Zhang, F. Li, C. Liu & H. M. Cheng. "The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage". Nanotechnology 19, 165606, (2008).
[60] H. Jia, C. Stock, R. Kloepsch, X. He, J. P. Badillo, O. Fromm, B. Vortmann, M. Winter & T. Placke. "Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries". ACS Applied Materials & Interfaces 7, 1508-1515, (2015).
[61] L. Deng, Y. Cui, J. Chen, J. Wu, A. P. Baker, Z. Li & X. Zhang. "A Core-Shell Si@NiSi2/Ni/C Nanocomposite as an Anode Material for Lithium-ion Batteries". Electrochimica Acta 192, 303-309, (2016).
[62] C. Y. Li, Z. H. Yu, H. Z. Liu & T. Q. Lü. "High-pressure powder X-ray diffraction study of Cu5Si and pressure-driven isostructural phase transition". Philosophical Magazine Letters 93, 85-92, (2013).
[63] T. Hirano & M. Kaise. "Electrical resistivities of single‐crystalline transition‐metal disilicides". Journal of Applied Physics 68, 627-633, (1990).
[64] S.-L. Zhang & M. Östling. "Metal Silicides in CMOS Technology: Past, Present, and Future Trends". Critical Reviews in Solid State and Materials Sciences 28, 1-129, (2003).
[65] M. V. Sullivan & J. H. Eigler. "Electroless Nickel Plating for Making Ohmic Contacts to Silicon". Journal of The Electrochemical Society 104, 226-230, (1957).
[66] P. Sahoo & S. K. Das. "Tribology of electroless nickel coatings – A review". Materials & Design 32, 1760-1775, (2011).
[67] N. Takano, N. Hosoda, T. Yamada & T. Osaka. "Mechanism of the Chemical Deposition of Nickel on Silicon Wafers in Aqueous Solution". Journal of The Electrochemical Society 146, 1407-1411, (1999).
[68] N. Takano, N. Hosoda, T. Yamada & T. Osaka. "Effect of oxidized silicon surface on chemical deposition of nickel on n-type silicon wafer". Electrochimica Acta 44, 3743-3749, (1999).
[69] A. M. Thron, P. K. Greene, K. Liu & K. V. Benthem. "Structural changes during the reaction of Ni thin films with (100) silicon substrates". Acta Materialia 60, 2668-2678, (2012).