簡易檢索 / 詳目顯示

研究生: 劉倩如
Liu, Chien-Ju
論文名稱: 添加氧化鋅/二氧化鈦電紡絲於釔鋇銅氧超導塊材之影響
Effect of Adding ZnO/TiO2 Nanorods Fabricated by Eletrospinning Method in Y-Ba-Cu-O Single Grain Bulk Superconductors
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 111
中文關鍵詞: 釔鋇銅氧超導塊材一維結構電紡絲磁束釘扎
外文關鍵詞: YBCO, bulk superconductor, 1D structure, electrospinning, flux pinning
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電紡絲製程製備TiO2及ZnO電紡絲一維奈米結構,將其添加於Y-Ba-Cu-O (YBCO)超導塊材中,並且與未添加的樣品和添加奈米粒子的樣品比較其對超導性質及微結構的影響。
    以電紡絲製程製作TiO2及ZnO一維奈米柱狀結構(NRs),TiO2 NRs的平均直徑為288.2nm;而ZnO NRs以兩種不同濃度的前驅物溶液製備,其直徑分別為51.5nm和198.6nm。實驗結果發現,少量添加(0.01~0.1wt%)NRs於YBCO塊材不會影響其單晶粒的成長。
    分別添加TiO2電紡絲和ZnO電紡絲的樣品,其最大擄獲磁場強度(Trapped field,Bt)都可以提升到0.13T為大於標準未添加塊材(0.08T)和添加奈米粒子的樣品(0.09T)。在臨界電流密度(Critical current density,Jc)方面,添加TiO2 NRs和ZnO NRs的樣品在在77K零場下的Jc值分別為5.2x104/cm2和4.8x104/cm2,約為未添加樣品(2.5x104/cm2)的兩倍,同時皆高於添加TiO2奈米粒子(3.3 x104/cm2)和ZnO奈米粒子(3.2 x104/cm2)的樣品。此外,本研究同時添加CeO2於上述添加NRs的樣品中,發現其超導性質,如Bt和Jc皆有效地被提升。
    觀察添加電紡絲塊材的微結構發現,添加NRs不會影響塊材中的非超導第二相Y2BaCuO5 (Y211)的尺寸及分布;值得令人注意的是,在添加TiO2 NRs和ZnO NRs超導塊材的基地相中發現形貌及直徑與一開始添加的NRs相似的柱狀結構,顯示電紡絲在高溫熔融製程後仍能保持其柱狀結構並分布於塊材中,增加了第二相與超導相之間的界面面積,因此提供更多位置的釘扎,使YBCO超導性質提升。另一方面,添加NRs樣品的超導性質高於添加奈米粒子的樣品,主要是因為一維柱狀結構在超導體中有較好的釘扎能力。

    This study presents the enhanced superconducting properties of single grain Y-Ba-Cu-O (YBCO) bulk superconductors by the addition of TiO2 and ZnO 1D nano-structures by electrospinning method and compares with that for the undoped sample and samples with the addition of nanoparticles (NPs).
    The TiO2 and ZnO nanorods (NRs) were fabricated by electrospinning method to be effective pinning centers of columnar defects in bulk YBCO superconductors. The mean diameter of TiO2 NRs was 288.2nm. There were two different sizes of ZnO NRs with mean diameter of 51.6nm and 198.6nm respectively, prepared from different concentration of precursor solutions. From the results, the YBCO bulks with the addition of NRs (0.01 ~ 0.1wt%) grew a single grain without sub-grains appearing.
    The maximal values of Bt of YBCO bulks doped with TiO2 and ZnO NRs are 0.13T and 0.12T, respectively, which was higher than that of the undoped sample (0.08T) and samples with the addition of TiO2 and ZnO nanoparticles (0.09T). The Jc at 77K and self field of YBCO bulks with the addition of TiO2 and ZnO NRs were enhanced to 5.2x104/cm2 and 4.8x104/cm2 respectively, which were twice as high as that of the undoped sample (2.5x104/cm2), and higher than that of the samples with the addition of TiO2 NPs (3.3 x104/cm2) and ZnO NPs. (3.2 x104/cm2). In addition, CeO2 were also added in the samples with the addition of NRs. The enhanced superconducting properties such as Bt and Jc were found.
    Microstructure analysis indicated that Y211 phase were similar with those in the undoped sample, including the size and distribution. It is noticeable that columnar structure of NRs with similar size and shape as the precursor NRs were found in the matrix of TiO2 and ZnO NRs doped YBCO bulks, showing that there was no reaction occurring between NRs and YBCO bulks during the melting process. Consequently, the enhanced superconducting properties were contributed to the increased interface areas between the NRs and matrix. For the samples doped with NRs and NPs, the NRs samples showed higher pinning efficiency and resulted in the enhancement of superconducting properties of YBCO bulks.

    摘要 I Abstract II 誌謝 IV 目錄 VI 表目錄 IX 圖目錄 X 第1章 緒論 1 1-1 前言 1 1-2 銅氧化物超導體的研究與應用 2 1-3 研究目的 3 第2章 理論基礎與文獻回顧 4 2-1 超導體及其基礎理論的發展歷程 4 2-1.1 超導體材料的發展 4 2-1.2 超導體的特性 4 2-1.3 超導體基本理論基礎 6 2-1.4 超導體的分類 9 2-1.5 釔系超導體 10 2-2 Y-Ba-Cu-O單晶塊材製程 11 2-2.1 頂端接種熔融織構製程 11 2-2.2 頂端接種熔融織構製程原理[12] 12 2-2.3 充氧退火製程 13 2-3 臨界電流密度的提升 14 2-3.1 臨界電流密度的定義 14 2-3.2 渦旋線的釘扎 14 2-3.3 釘扎中心 16 2-3.4 離子置換釔鋇銅氧超導體晶格 17 2-3.5 以非超導相介在物的形式存在 19 2-4 電紡絲製程 20 2-4.1 電紡絲製程 20 2-4.2 氧化鋅及二氧化鈦電紡絲 22 第3章 實驗方法及步驟 44 3-1 實驗材料 44 3-2 實驗流程 45 3-2.1 前驅物粉末的合成 45 3-2.2 成長添加不同含量的電紡絲的釔鋇銅氧超導塊材 47 3-3 性質分析 48 3-3.1 超導前驅粉末相分析 48 3-3.2 氧化鋅及二氧化鈦電紡絲性質分析 48 3-3.3 超導塊材性質分析 48 3-4 實驗儀器設備 50 第4章 結果與討論 59 4-1 前驅粉末的合成 59 4-1.1 前驅超導粉末 Y123及Y211粉末XRD繞射結果 59 4-1.2 氧化鋅/二氧化鈦電紡絲的製備 59 4-2 成長添加電紡絲的釔鋇銅氧超導單晶塊材 66 4-2.1 前驅物粉末的混合 66 4-2.2 單晶塊材成長 66 4-3 添加TiO2電紡絲於釔鋇銅氧塊材對其超導性質之影響 71 4-3.1 對超導塊材擄獲磁場強度之影響 71 4-3.2 對超導臨界溫度之影響 71 4-3.3 對超導臨界電流密度之影響 72 4-3.4 小結 73 4-4 添加ZnO電紡絲於釔鋇銅氧塊材對其超導性質之影響 82 4-4.1 對超導塊材擄獲磁場強度之影響 82 4-4.2 對超導臨界溫度之影響 83 4-4.3 對超導臨界電流密度之影響 83 4-4.4 小結 84 4-5 添加電紡絲於釔鋇銅氧塊材對其微結構之影響 95 4-6 討論添加不同添加物於釔鋇銅氧超導體之影響 101 第5章 結論 105 參考文獻 107

    [1] 陳引幹, “零電阻時代的超導陶瓷,” 科學發展, vol. 3月, pp. 6~11, 2004.
    [2] M. Tomita, and M. Murakami, “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K,” Nature, vol. 421, no. 6922, pp. 517-520, 2003.
    [3] Q. Li, X. X. Xi, X. D. Wu et al., “Interlayer coupling effect in high-Tc superconductors probed by YBa2Cu3O7-x/PrBa2Cu3O7-x superlattices,” Physical Review Letters, vol. 64, no. 25, pp. 3086-3089, 1990.
    [4] Y. Zhao, C. H. Cheng, and J. S. Wang, “Flux pinning by NiO-induced nano-pinning centres in melt-textured YBCO superconductor,” Superconductor Science and Technology, vol. 18, no. 2, pp. S43, 2005.
    [5] C. P. Bean, “Magnetization of high-field superconductors,” Reviews of Modern Physics, vol. 36, no. 1, pp. 31-39, 1964.
    [6] Y. Shiohara, and A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials,” Materials Science and Engineering: R: Reports, vol. 19, no. 1, pp. 1-86, 1997.
    [7] A. A. Abrikosov, “Nobel lecture: Type-II superconductors and the vortex lattice,” Reviews of Modern Physics, vol. 76, no. 3, pp. 975-979, 2004.
    [8] T. Hatano, Matsushita, Akiyuki,Nakamura, Keikichi, Sakka, Yoshio, Matsumoto, Takehiko, Ogawa, Keiichi, “ Superconducting and transport properties of B-Y-Cu-O compounds-orthorhombic and tetragonal phases,” Japanese Journal of Applied Physics, vol. 26, no. part 2, No. 5, 1987.
    [9] S. Jin, T. H. Tiefel, R. C. Sherwood et al., “Melt-textured growth of polycrystalline YBa2Cu3O7-δ with high transport Jc at 77 K,” Physical Review B, vol. 37, no. 13, pp. 7850-7853, 1988.
    [10] H. Fujimoto, C. Cai, and E. Ohtabara, “Sm–Ba–Cu–O bulk superconductors melt-processed in air,” Physica C: Superconductivity, vol. 372–376, Part 2, no. 0, pp. 1111-1114, 2002.
    [11] A. J. Young, H. Gye-Won, K. Chan-Joong et al., “Dissolution of SmBa2Cu3O7-y seed crystals during top-seeded melt growth of YBa2Cu3O7-y,” Superconductor Science and Technology, vol. 11, no. 7, pp. 650, 1998.
    [12] Y. Shiohara, and A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials,” Materials Science and Engineering: R: Reports, vol. 19, no. 1-2, pp. 1-86, 1997.
    [13] R. J. Cava, B. Batlogg, C. H. Chen et al., “Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7-,” Nature, vol. 329, no. 6138, pp. 423-425, 1987.
    [14] B.-J. Lee, and D. N. Lee, “Thermodynamic evaluation for the Y2O3–BaO–CuOx system,” Journal of the American Ceramic Society, vol. 74, no. 1, pp. 78-84, 1991.
    [15] T. B. Lindemer, J. F. Hunley, J. E. Gates et al., “Experimental and thermodynamic study of nonstoichiometry in 〈YBa2Cu3O7-x〉,” Journal of the American Ceramic Society, vol. 72, no. 10, pp. 1775-1788, 1989.
    [16] M. Murakami, “Key issues for the characterization of RE–Ba–Cu–O systems (RE: Nd, Sm, Eu, Gd),” Applied Superconductivity, vol. 6, no. 2–5, pp. 51-59, 1998.
    [17] H. Hayakawa, and Y. Enomoto, Advances in superconductivity VIII: proceedings of the 8th International Symposium on Superconductivity, October 30-November 2, 1995, Hamamatsu: Springer-Verlag, 1996.
    [18] M. Tinkham, Introduction to superconductivity: McGraw Hill, 1996.
    [19] K. Matsumoto, and P. Mele, “Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors,” Superconductor Science and Technology, vol. 23, no. 1, pp. 014001, 2010.
    [20] B. Jayaram, S. K. Agarwal, C. V. Narasimha Rao et al., “Anomalously large Tc depression by Zn substitution in Y-Ba-Cu-O,” Physical Review B, vol. 38, no. 4, pp. 2903-2905, 1988.
    [21] H. Alloul, J. Bobroff, and P. Mendels, “Comment on “Al NMR Local Probe of Local Moments Induced by an Al impurity in High- Tc Cuprate La1.85Sr0.15CuO4”,” Physical Review Letters, vol. 78, no. 12, pp. 2494-2494, 1997.
    [22] J. M. S. Skakle, “Crystal chemical substitutions and doping of YBa2Cu3Ox and related superconductors,” Materials Science and Engineering: R: Reports, vol. 23, no. 1, pp. 1-40, 1998.
    [23] R. Liang, M. Itoh, T. Nakamura et al., “The effect of La substitution on the superconductivity of Ba2YCu3Oy,” Physica C: Superconductivity, vol. 157, no. 1, pp. 83-88, 1989.
    [24] R. J. Cava, B. Batlogg, R. M. Fleming et al., “Ba2-xLaxYCu3O7±δ perovskite compounds: Crystal chemistry,” Physical Review B, vol. 37, no. 10, pp. 5912-5915, 1988.
    [25] M. R. Chandrachood, I. S. Mulla, and A. P. B. Sinha, “Studies on superconductivity in YLaxBa2−xCu3O7± compositions,” Solid State Communications, vol. 68, no. 11, pp. 1005-1009, 1988.
    [26] G. W. Kammlott, T. H. Tiefel, and S. Jin, “Recovery of 90 K superconductivity in transition-metal-doped Y-Ba-Cu-O,” Applied Physics Letters, vol. 56, no. 24, pp. 2459, 1990.
    [27] H. Alloul, P. Mendels, H. Casalta et al., “Correlations between magnetic and superconducting properties of Zn-substituted YBa2Cu3O6+x,” Physical Review Letters, vol. 67, no. 22, pp. 3140-3143, 1991.
    [28] K. R. Mavani, D. S. Rana, R. Nagarajan et al., “Effect of Sc and Ti doping on superconducting and magnetic properties in DyBa2Cu3O7−z,” Journal of Magnetism and Magnetic Materials, vol. 272–276, Supplement, no. 0, pp. E1067-E1069, 2004.
    [29] M. Muralidhar, M. Jirsa, and M. Tomita, “Flux pinning and superconducting properties of melt-textured NEG-123 superconductor with TiO2 addition,” Physica C: Superconductivity, vol. 470, no. 13-14, pp. 592-597, 2010.
    [30] J. M. Tarascon, P. Barboux, P. F. Miceli et al., “Structural and physical properties of the metal (M) substituted YBa2Cu3-xMxO7-y perovskite,” Physical Review B, vol. 37, no. 13, pp. 7458-7469, 1988.
    [31] Y. X. Zhou, S. Scruggs, and K. Salama, “Effects of ionic doping on superconducting properties of melt textured YBa2(Cu1−xMx)3O7−δ (M = Co, Ni, Zn or Ga) large grains,” Superconductor Science and Technology, vol. 19, no. 7, pp. S556-S561, 2006.
    [32] G. Krabbes, G. Fuchs, P. Schätzle et al., “Zn doping of YBa2Cu3O7 in melt textured materials: peak effect and high trapped fields,” Physica C: Superconductivity, vol. 330, no. 3–4, pp. 181-190, 2000.
    [33] G. Fuchs, G. Krabbes, P. Schätzle et al., “Bulk superconducting magnets with fields beyond 14 T,” Physica B: Condensed Matter, vol. 294–295, no. 0, pp. 398-401, 2001.
    [34] S. Gruss, G. Fuchs, G. Krabbes et al., “Superconducting bulk magnets: Very high trapped fields and cracking,” Applied Physics Letters, vol. 79, no. 19, pp. 3131-3133, 2001.
    [35] M. T. González, and et al., “Enhancement of Jc under magnetic field by Zn doping in melt-textured Y–Ba–Cu–O superconductors,” Superconductor Science and Technology, vol. 15, no. 10, pp. 1372, 2002.
    [36] C. Leblond, I. Monot, J. Provost et al., “Optimization of the texture formation and characterization of large size top-seeded-melt-grown YBCO pellets,” Physica C: Superconductivity, vol. 311, no. 3–4, pp. 211-222, 1999.
    [37] C. Po-Wei, C. In-Gann, C. Shih-Yun et al., “The peak effect in bulk Y–Ba–Cu–O superconductor with CeO2 doping by the infiltration growth method,” Superconductor Science and Technology, vol. 24, no. 8, pp. 085021, 2011.
    [38] D. Pavel, W. Christian, L. Doris et al., “The influence of starting YBa2Cu3O7-x particle size and Pt/Ce addition on the microstructure of YBa2Cu3O7-x - Y2BaCuO5 melt processed bulks,” Superconductor Science and Technology, vol. 11, no. 1, pp. 49, 1998.
    [39] P. Yang, and C. M. Lieber, “Nanorod-superconductor composites: A pathway to materials with high critical current densities,” Science, vol. 273, no. 5283, pp. 1836-1840, September 27, 1996, 1996.
    [40] R. Weinstein, R.-P. Sawh, D. Parks et al., “Very high values of Jc obtained in NdBa2Cu3Ox by use of the U/n process,” Physica C: Superconductivity, vol. 383, no. 3, pp. 214-222, 2002.
    [41] L. Civale, A. Marwick, T. Worthington et al., “Vortex confinement by columnar defects in YBa_{2}Cu_{3}O_{7} crystals: Enhanced pinning at high fields and temperatures,” Physical Review Letters, vol. 67, no. 5, pp. 648-651, 1991.
    [42] A. Formhals, US Patent, pp. 1,975,504 1934.
    [43] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen et al., “Controlled deposition of electrospun poly(ethylene oxide) fibers,” Polymer, vol. 42, no. 19, pp. 8163-8170, 2001.
    [44] Z.-M. Huang, Y. Z. Zhang, M. Kotaki et al., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, vol. 63, no. 15, pp. 2223-2253, 2003.
    [45] J. Doshi, and D. H. Reneker, "Electrospinning process and applications of electrospun fibers." pp. 1698-1703 vol.3.
    [46] H. Fong, and D. H. Reneker, “Elastomeric nanofibers of styrene–butadiene–styrene triblock copolymer,” Journal of Polymer Science Part B: Polymer Physics, vol. 37, no. 24, pp. 3488-3493, 1999.
    [47] M. M. Demir, I. Yilgor, E. Yilgor et al., “Electrospinning of polyurethane fibers,” Polymer, vol. 43, no. 11, pp. 3303-3309, 2002.
    [48] J. M. Deitzel, J. Kleinmeyer, D. Harris et al., “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, vol. 42, no. 1, pp. 261-272, 2001.
    [49] J. Y. Park, and S. S. Kim, “Growth of nanograins in electrospun ZnO nanofibers,” Journal of the American Ceramic Society, vol. 92, no. 8, pp. 1691-1694, 2009.
    [50] D. Li, and Y. Xia, “Fabrication of Titania Nanofibers by Electrospinning,” Nano Letters, vol. 3, no. 4, pp. 555-560, 2003.
    [51] 吳明治, “不同直徑之二氧化鈦電紡絲在染料敏化太陽能電池中之光散射特性及電荷的傳輸研究,” Material science and engineering, National Cheng Kung University, Tainan, 2011.
    [52] M. E. Ganji, A. M. Bazargan, M. Keyanpour-Rad et al., “Morphological and optical characterization of electrospun zinc oxide nanofibers,” Functional Materials Letters, vol. 03, no. 02, pp. 141, 2010.
    [53] W.-S. Chen, D.-A. Huang, H.-C. Chen et al., “Fabrication of polycrystalline ZnO nanotubes from the electrospinning of Zn2+/poly(acrylic acid),” Crystal Growth & Design, vol. 9, no. 9, pp. 4070-4077, 2009.
    [54] D. Dew-Hughes, “Flux pinning mechanisms in type II superconductors,” Philosophical Magazine, vol. 30, no. 2, pp. 293-305, 1974/08/01, 1974.
    [55] V. V. Moshchalkov, “Vortex matter in superconductors at extreme scales and conditions: A scientific program of the European Science Foundation,” Physica C: Superconductivity, vol. 332, no. 1–4, pp. ix-xv, 2000.
    [56] D. Pavuna, Introduction to Superconductivity and High-Tc Materials: World Scientific, 1992.
    [57] M. Murakami, “Melt processed high-temperature superconductors,” Tokyo, Japan: World Scientific Publishing Co. Pte. Ltd, 1992.
    [58] 楊佳明, “新型鐵基超導材料FeSe之性質研究,” Material science and engineering, National Cheng Kung University, Tainan, 2008.
    [59] 陳柏偉, “滲透法及奈米添加物對Y-Ba-Cu-O超導體的超導性及微結構的影響,” Material science and engineering, National Cheng Kung University, Tainan, 2012.
    [60] “JCPDS-ICCD, PDF-number:501886.”
    [61] “JCPDS-ICCD, PDF-number:38-1434.”
    [62] K. Semba, A. Matsuda, and T. Ishii, “Normal and superconductive properties of Zn-substituted single-crystal YBa2(Cu1-xZnx)3O7-  ” Physical Review B, vol. 49, no. 14, pp. 10043, 1994.
    [63] D. C. Zeng, Y. Z. Wang, G. F. Zhou et al., “High field magnetization of YBa2(Cu,Zn)3O7- superconductors,” Journal of Alloys and Compounds, vol. 228, no. 1, pp. 79-82, 1995.
    [64] T. R. Chien, Z. Z. Wang, and N. P. Ong, “Effect of Zn impurities on the normal-state Hall angle in single-crystal YBa2Cu3-xZnxO7-,” Physical Review Letters, vol. 67, no. 15, pp. 2088, 1991.
    [65] G. Xiao, F. H. Streitz, A. Gavrin et al., “Effect of transition-metal elements on the superconductivity of Y-Ba-Cu-O,” Physical Review B, vol. 35, no. 16, pp. 8782-8784, 1987.
    [66] G. Roth, P. Adelmann, R. Ahrens et al., “Crystal structure and specific heat of YBa2(Cu1-xZnx)3O7-(x=0.01 ... 0.1,=0;0.9),” Physica C: Superconductivity, vol. 162–164, Part 1, no. 0, pp. 518-519, 1989.
    [67] "Handbook of analytical method for materials," Materials Evaluation and engineering, Inc, 2001.
    [68] E. Rene et al., “Handbook of X-ray Spectrometer,” Marcel Dekker, Inc., 2002.

    無法下載圖示 校內:2017-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE