| 研究生: |
李超 Li, Chao |
|---|---|
| 論文名稱: |
P-N型氮化鎵奈米元件之製作與移轉技術 P-N GaN nanodevice fabrication and transfer technology |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 電漿輔助化學氣相沉積法 、P-N接面 、氮化鎵奈米柱 、電子阻擋層 、發光二極體 、移轉 |
| 外文關鍵詞: | plasma-enhanced chemical vapor deposition, P-N junction, gallium nitride nanorods, electron blocking layer, light-emitting diodes, transfer |
| 相關次數: | 點閱:202 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵一維奈米結構型發光二極體具有高比表面積與低缺陷濃度之特性,其理論發光強度遠高於薄膜型發光二極體,在光電應用領域發展潛力巨大。本研究分為兩部分:第一部分以實驗室自行開發之爐管型電漿輔助化學氣相沉積設備,成長氮化鎵一維奈米結構型發光二極體;第二部分開發元件移轉技術,藉此解決奈米柱底部細小之缺點。
在第一部分研究中,於 n+Si(111)基板上,成長出垂直於基板表面之高品質未摻雜氮化鎵奈米柱。然後以氮化鎂作摻雜成長p型氮化鎵,之後以Cl2輔助成長AlGaN電子阻擋層,進而製作成GaN/AlGaN發光二極體元件。由元件之電流-電壓整流曲線,可證實P-N接面之存在。並且在定電流100mA注入時,觀察到有紫色之電致發光現象。同樣以矽摻雜氮化鎵製作之P-N GaN 發光二極體元件,在進行量測時,亦發現電流-電壓曲線具有整流特性,且在正向偏壓達到12伏特時,觀察到有紫色之電致發光現象,其發光亮度隨著電壓上升,由弱變強再變弱。
在第二部分研究中,於沉積有一層300nm SiO2 氧化層的p+Si(111)基板上,成長氮化鎵奈米柱。由於氮化鎵奈米柱底部細小,因而在注入高電流時易過熱而燒壞。故本團隊開發出元件移轉技術,將奈米柱從原有基板分離並轉貼至其他基板,最後製作成元件並進行電性量測。從電流-電壓曲線可以看出,元件移轉至其他基板後,其各界面之接觸良好。
Due to high surface-to-volume ratio and low defect concentration, gallium nitride 1-D nano-structure light-emitting diodes has higher light intensity and huge development potential than thin-film light-emitting diodes in the field of optoelectronic application. There are two parts in this work: the first one is focused on the growth of gallium nitride 1-D nano-structure LED by homemade plasma-enhanced chemical vapor deposition system; The second part is about the development of device transfer technology, which can solve the problem the bottom of single nanorod has a small cross-sectional area.
In the first part, high quality undoped GaN nanorods were grown on the n+ Si(100) substrate. We used Mg3N2 as the dopant to grow p-type GaN, then used Cl2-enhanced PECVD system to grow AlGaN electron blocking layer. Finally, GaN/AlGaN LED device was fabricated. The rectifying I-V curves confirmed the formation of P-N junction and violet electroluminescence was observed under 100mA. For the P-N GaN LED device, the rectifying I-V curve was found and violet electroluminescence was observed under 12V. The brightness increased at first and then decreased with the voltage rising.
In the second part, GaN nanorods were grown on the p+ Si(100) substrate with 300nm SiO2 layer. Because the bottom of single nanorod has a very small cross-sectional area, it’s very easy to be burnt down while injecting higher current. So we developed device transfer technology to separate nanodevice from original substrate and attach it into another substrate, finally made it into device. From the I-V curve, it was found all interfaces have good contact after transferring.
[1] U. S. Department of Energy (2011). Available from:
http://www1.eere.energy.gov/bulidings/ssl/sslbasics_whyssl.html
[2] Owen Comstock and Kevin Jarzomski (2014), LED bulb efficiency expected to continue improving as cost declines. Available from: http://www.eia.gov/todayinenergy/detail.cfm?id=15471
[3] W. Lu, P. Xie and C. M. Lieber, “Nanowire transistor performance limits and applications,” IEEE Transactions on Electron Devices, vol. 55, pp. 2859, 2008.
[4] F. Qian, S. Gradečak, Y. Li, C. Wen, and C. M. Lieber,“Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Letters, vol. 5, pp. 2287, 2005.
[5] M.A.Zimmler, F.Capasso, S.Müllerand C.Ronning, ”Optically pumped nanowire lasers: invited review," Semiconductor Science and Technology, vol. 25, pp. 024001, 2010.
[6] B. Tian, T. J. Kempa and C. M. Lieber, “Single nanowire photovoltaics,” Chemical Society Reviews, vol. 38, pp. 16, 2009.
[7] E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annual Review of Materials Research, vol. 41, pp. 269, 2011.
[8] V. Dobrokhotov, D. N. McIlroy, M. G. Norton, A. Abuzir,W. J. Yeh, I. Stevenson,R. Pouy,J. Bochenek,M. Cartwright,L. Wang,J. Dawson,M. BeauxandC. Berven, “Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles,”Journal of Applied Physics, vol. 99, pp. 104302, 2006.
[9] A. K. Wanekaya, W. Chen, N. V. Myung and A. Mulchandani, “Nanowire-based electrochemical biosensors,” Electroanalysis, vol. 18, pp. 533, 2006.
[10] Kikuchi, Akihiko, et al. "Growth and characterization of InGaN/GaN nanocolumn LED." Integrated Optoelectronic Devices 2006.
[11] Eyink, K. G., & Huffaker, D. L. (2007). Quantum dots, particles, and nanoclusters III (23-24 January 2006, San Jose, California, USA). InProceedings of SPIE, the International Society for Optical Engineering. SPIE.
[12] E.F.Schubert (2006), Light-Emitting-Diodes(2nd ed.), NewYork: Cambridge University Press
[13] S. Nakamura, S. Pearton, and G. Fasol (2000), "The Blue Laser Diode: The Complete Story (2nd ed.)," Berlin: Springer-Verlag.
[14] M. E. Levinshteĭn, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, and SiGe. New York: John Wiley and Sons, 2001.
[15] S. Porowski, "Growth and properties of single crystalline GaN substrates and homoepitaxial layers," Materials science & engineering. B, Solid-state materials for advanced technology, vol. B44, pp. 407-413, 1997.
[16] D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., "Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy," Applied Physics Letters, vol. 77, pp.1464-1466, 2000.
[17] J. H. Edgar, Properties, processing and applications of gallium nitride and related semiconductors. London: INSPEC, 1999.
[18] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., "Nanoindentation of epitaxial GaN films," Applied Physics Letters, vol. 77, pp. 3373-3375, 2000.
[19] S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H. H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg(2011), "Polarity and Its Influence on Growth Mechanism during MOVPE Growth of GaN Sub-micrometer Rods", Crystal Growth & Design, 11(5) pp. 1573-1577.
[20] Feng Shi (2011), GaN Nanowires Fabricated by Magnetron Sputtering Deposition. Available from: http://www.intechopen.com/books/nanowires-fundamental-research/gan-nanowires-fabricated-by-magnetron-sputtering-deposition
[21] H. Morkoç, Nitride Semiconductors and Devices. Berlin: Springer-Verlag, 1999.
[22] Yu Huang, Xiangfeng Duan, Yi Cui, and Charles M. Lieber(2002), "Gallium Nitride Nanowire Nanodevices", Nano Letters, 2(2) pp. 101-104.
[23] Nakamura Shuji (1991), "GaN Growth Using GaN Buffer Layer", Japanese Journal of Applied Physics, 30(10A) pp. L1705.
[24] Raffaella Calarco, Michel Marso, Thomas Richter, Ali I. Aykanat, Ralph Meijers, André V.D. Hart, Toma Stoica, and Hans Lüth(2005), "Size-dependent Photoconductivity in MBE-Grown GaN−Nanowires",Nano Letters, 5(5) pp. 981-984.
[25] N. A. Sanford, P. T. Blanchard, K. A. Bertness, L. Mansfield, J. B. Schlager, A. W. Sanders, A. Roshko, B. B. Burton, and S. M. George(2010), "Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy", Journal of Applied Physics, 107(3) pp. 034318.
[26] E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, and B. Daudin(2004), "Modification of GaN(0001) growth kinetics by Mg doping", Applied Physics Letters, 84(14) pp. 2554-2556.
[27] Amano Hiroshi, Kito Masahiro, Hiramatsu Kazumasa, and Akasaki Isamu (1989), "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)", Japanese Journal of Applied Physics, 28(12A) pp. L2112.
[28] Nakamura Shuji, Iwasa Naruhito, Senoh Masayuki, and Mukai Takashi (1992), "Hole Compensation Mechanism of P-Type GaN Films", Japanese Journal of Applied Physics, 31(5R) pp. 1258.
[29] Nakamura Shuji, Mukai Takashi, Senoh Masayuki, and Iwasa Naruhito (1992), "Thermal Annealing Effects on P-Type Mg-Doped GaN Films", Japanese Journal of Applied Physics, 31(2B) pp. L139.
[30] W. Gotz, N. M. Johnson, D. P. Bour, M. D. Mccluskey, and E. E. Haller (1996),"Local vibrational modes of the Mg–H acceptor complex in GaN", Applied Physics Letters, 69(24) pp. 3725-3727.
[31] H. Harima, T. Inoue, S. Nakashima, M. Ishida, and M. Taneya (1999), "Local vibrational modes as a probe of activation process in p-type GaN", Applied Physics Letters, 75(10) pp. 1383-1385.
[32] C. W. Chin, F. K. Yam, K. P. Beh, Z. Hassan, M. A. Ahmad, Y. Yusof, and S. K. Mohd Bakhori(2011), "The growth of heavily Mg-doped GaN thin film on Si substrate by molecular beam epitaxy", Thin Solid Films, 520(2) pp. 756-760.
[33] E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed(2006), "The effect of Mg doping on GaN nanowires", Nanotechnology, 17(23) pp. 5735.
[34] Guosheng Cheng, Andrei Kolmakov, Youxiang Zhang, Martin Moskovits, Ryan Munden, Mark A. Reed, Guangming Wang, Daniel Moses, and Jinping Zhang(2003), "Current rectification in a single GaN nanowire with a well-defined p–n junction", Applied Physics Letters, 83(8) pp. 1578-1580.
[35] Zhaohui Zhong, Fang Qian, Deli Wang, and Charles M. Lieber (2003), "Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices", Nano Letters, 3(3) pp. 343-346.
[36] John R. Soulen, Prasom Sthapitanonda, and John L. Margrave (1955), "Vaporization of Inorganic Substances: B2O3, TeO2 and Mg3N2", The Journal of Physical Chemistry, 59(2) pp. 132-136.
[37] S. Li and A. Waag, "GaN based nanorods for solid state lighting," Journal of Applied Physics, vol. 111, p. 071101, 2012.
[38] D. Zubia and S. D. Hersee (1999), "Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials", Journal of Applied Physics, 85(9) pp. 6492-6496.
[39] A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., "The nanorod approach: GaN NanoLEDs for solid state lighting," Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, pp. 2296-2301, 2011.
[40] Hong Jin Fan, Peter Werner, and Margit Zacharias (2006), "Semiconductor Nanowires: From Self-Organization to Patterned Growth", Small, 2(6) pp. 700-717.
[41] Seryogin George, Shalish Ilan, Moberlychan Warren, and Narayanamurti Venkatesh (2005), "Catalytic hydride vapour phase epitaxy growth of GaN nanowires", Nanotechnology, 16(10) pp. 2342.
[42] J. Li, C. Lu, B. Maynor, S. Huang, and J. Liu, "Controlled Growth of Long GaN Nanowires from Catalyst Patterns Fabricated by "Dip-Pen" Nanolithographic Techniques," Chemistry of Materials, vol. 16, pp. 1633-1636, 2004.
[43] C. Y. Nam, J. Y. Kim, and J. E. Fischer, "Focused-ion-beam platinum nanopatterning forGaN nanowires: Ohmic contacts and patterned growth," Applied Physics Letters, vol. 86, pp. 1-3, 2005.
[44] J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., "On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy," Journal of Crystal Growth, vol. 310, pp. 4035-4045, 2008.
[45] M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, et al., "Effect of the III/V ratio and substrate temperature on the morphology and properties of GaN-and AlN-layers grown by molecular beam epitaxy on Si(1 1 1)," Journal of Crystal Growth, vol.183, pp. 23-30, 1998.
[46] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, "Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks," Journal of Crystal Growth, vol. 189-190, pp. 138-141, 1998.
[47] K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, "Spontaneously grown GaN and AlGaN nanowires," Journal of Crystal Growth, vol. 287, pp. 522-527, 2006.
[48] R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)," Applied Physics Letters, vol. 90, p. 123117, 2007.
[49] K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, "Nucleation conditions for catalyst-free GaN nanowires," Journal of Crystal Growth, vol. 300, pp. 94-99, 2007.
[50] Werner U. Boeglin (2011), PN-Junction. Available from: http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pn_junction.html
[51] Brubaker, M. D., Blanchard, P. T., Schlager, J. B., Sanders, A. W., Herrero, A. M., Roshko, A., ... & Bertness, K. A. (2013). Toward Discrete Axial p–n Junction Nanowire Light-Emitting Diodes Grown by Plasma-Assisted Molecular Beam Epitaxy. Journal of electronic materials, 42(5), 868-874.
[52] J. R. Roth (1995), Industrial plasma engineering-Volume 1: Principles Institute of Physics, Bristol and Philadelphia: Institute of Physics.
[53]http://www.semicontaiwan.org/zh/sites/semicontaiwan.org/files/7.13001330
[54] http://case.ntu.edu.tw/blog/?p=23024
[55] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann: Appl. Phys. Lett. 69 (1996) 1749.
[56] W. S. Wong, L. F. Schloss, G. S. Sudhir, B. P. Linder, K.-M. Yu, E. R. Weber, T. Sands, and N. W. Cheung: Mater. Res. Soc. Symp. Proc. 449 (1997) 1011.
[57] M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann: Phys. Status Solidi A 159 (1997) R3.
[58] M. K. Kelly, O. Ambacher, R. Dimitrov, H. Angerer, R. Handschuh, and M. Stutzmann: Mater. Res. Soc. Symp. Proc. 482 (1998) 973.
[59] W. S. Wong, T. Sands, and N. W. Cheung: Appl. Phys. Lett. 72 (1998) 599.
[60] Ueda, T., Ishida, M., & Yuri, M. (2011). Separation of thin GaN from sapphire by laser lift-off technique. Japanese Journal of Applied Physics, 50 (4R), 041001.
[61] M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Go¨rgens, O. Ambacher, and M. Stutzmann: Jpn. J. Appl. Phys. 38 (1999) L217.
[62] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson: Appl. Phys. Lett. 75 (1999) 1360.
[63] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson: Appl. Phys. Lett. 77 (2000) 2822.
[64] Yablonovitch, E., Gmitter, T., Harbison, J. P., & Bhat, R. (1987).Extreme selectivity in the lift‐off of epitaxial GaAs films. Applied Physics Letters, 51(26), 2222-2224.
[65] Detchprohm, T., Amano, H., Hiramatsu, K., & Akasaki, I. (1993). The growth of thick GaN film on sapphire substrate by using ZnO buffer layer. Journal of crystal growth, 128(1), 384-390.
[66] Zhaohui Zhong, Fang Qian, Deli Wang, and Charles M. Lieber (2003), "Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices", Nano Letters, 3(3) pp. 343-346.
[67]http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
[68] 吳東憲(2012),以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用,國立成功大學化學工程學系博士論文.
[69] J. Karpiński, S. Porowski, and S. Miotkowska (1982), "High pressure vapor growth of GaN", Journal of Crystal Growth, 56(1) pp. 77-82.
[70] Michael A. Reshchikov and Hadis Morkoç (2005), "Luminescence properties of defects in GaN", Journal of Applied Physics, 97(6), 061301.
[71] T. Suski, P. Perlin, H. Teisseyre, M. Leszczyński, I. Grzegory, J. Jun, M. Boćkowski, S. Porowski, and T. D. Moustakas(1995), "Mechanism of yellow luminescence in GaN", Applied Physics Letters, 67(15) pp. 2188-2190.
[72] Li, S., & Waag, A. (2012). GaN based nanorods for solid state lighting.Journal of Applied Physics, 111(7), 071101.
[73] Kang, M. S., Lee, C. H., Park, J. B., Yoo, H., & Yi, G. C. (2012).Gallium nitride nanostructures for light-emitting diode applications. Nano energy, 1(3), 391-400.
[74] Keunjoo Kim and Joseph G. Harrison(2003), "Critical Mg doping on the blue-light emission in p-type GaN thin films grown by metal–organic chemical-vapor deposition", Journal of Vacuum Science & Technology A, 21(1) pp. 134-139.
[75] M. A. Reshchikov, G. C. Yi, and B. W. Wessels(1999), "Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities", Physical Review B, 59(20) pp. 13176-13183.
[76] M. A. Reshchikov, J. Xie, L. He, X. Gu, Y. T. Moon, Y. Fu, and H. Morkoç(2005), "Effect of potential fluctuations on photoluminescence in Mg-doped GaN", physica status solidi (c), 2(7) pp. 2761-2764.
[77] Daisuke Iida, Kenta Tamura, Motoaki Iwaya, Satoshi Kamiyama, Hiroshi Amano, and Isamu Akasaki(2010), "Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy", Journal of Crystal Growth, 312(21) pp. 3131-3135.
[78] H. Obloh, K. H. Bachem, U. Kaufmann, M. Kunzer, M. Maier, A. Ramakrishnan, and P. Schlotter(1998), "Self-compensation in Mg doped p-type GaN grown by MOCVD", Journal of Crystal Growth, 195(1–4) pp. 270-273.
[79] 簡翊 (2015),成長n 型及 p 型氮化鎵奈米柱以製作LED 元件,國立成功大學化學工程學系碩士論文.
校內:2021-08-02公開