| 研究生: |
莊嘉文 Chuang, Chia-Wen |
|---|---|
| 論文名稱: |
地表電場監控網絡:儀器建置與理論模型於大氣與太空科學之應用 The Surface Electric Field Monitoring Network: Instrumentation, Model, and Application in Atmosphere and Space Sciences |
| 指導教授: |
陳炳志
Chen, Bing-Chih |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 大氣電學 、全球大域電路 、大氣電場 、電場磨 、雷暴系統 、地震前兆 |
| 外文關鍵詞: | Atmospheric Electricity, Global Electrical Circuit, Atmospheric Electric Field, Electric Field Mill, Thunderstorm, Earthquake Precursor |
| 相關次數: | 點閱:186 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Afreen, S., Victor, N. J., Nazir, S., Siingh, D., Bashir, G., Ahmad, N., Ahmad, S. J., & Singh, R. P. (2022). Fair-weather atmospheric electric field measurements at Gulmarg, India. Journal of Earth System Science, 131(1), 1-19.
Ahrens, C. D. (2014). Essentials of meteorology: an invitation to the atmosphere. Cengage Learning.
Akhoondzadeh, M. (2012). Anomalous TEC variations associated with the powerful Tohoku earthquake of 11 March 2011. Natural Hazards and Earth System Sciences, 12(5), 1453-1462.
Aplin, K. L. (2012). Smoke emissions from industrial western Scotland in 1859 inferred from Lord Kelvin’s atmospheric electricity measurements. Atmospheric Environment, 50, 373-376.
Aplin, K. L., & Harrison, R. G. (2013). Lord Kelvin's atmospheric electricity measurements. History of Geo-and Space Sciences, 4(2), 83-95.
Aubrecht, L., Koller, J., & Stanek, Z. (2000). Onset voltages of atmospheric corona discharges on plants. Czechoslovak Journal of Physics, 50(3), 313-318.
Auden, E. C., Novak, J., Salazar, R. W., & Hinckley, A. (2017). Uncertainty Analysis of an Electric Field Mill Calibration System (No. SAND2017-4999C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
Bai, R., Cui, X., Lu, T., Zhou, X., He, J., Hou, H., ... & Li, X. (2013). Experimental study on ion-flow fields inside greenhouse models underneath the DC test wire. IEEE transactions on power delivery, 28(4), 2154-2161.
Bailey, J. C., Blakeslee, R. J., Buechler, D. E., & Christian, H. J. (2007, August). Diurnal lightning distributions as observed by the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). In 13th International Conference on Atmospheric Electricity.
Bateman, M. G., Stewart, M. F., Podgorny, S. J., Christian, H. J., Mach, D. M., Blakeslee, R. J., ... & Daskar, D. (2007). A low-noise, microprocessor-controlled, internally digitizing rotating-vane electric field mill for airborne platforms. Journal of Atmospheric and Oceanic Technology, 24(7), 1245-1255.
Bennett, A. J., & Harrison, R. G. (2007). Atmospheric electricity in different weather conditions. Weather, 62(10), 277-283.
Bennett, A. J., & Harrison, R. G. (2008, December). Variability in surface atmospheric electric field measurements. In Journal of Physics: Conference Series (Vol. 142, No. 1, p. 012046). IOP Publishing.
Bering, I. I. I., & Few, A. A. (1998). The global electric circuit. Physics today, 51(10), 24-30.
Biagi, P. F., Maggipinto, T., Righetti, F., Loiacono, D., Schiavulli, L., Ligonzo, T., ... & Contadakis, M. E. (2011). The European VLF/LF radio network to search for earthquake precursors: setting up and natural/man-made disturbances. Natural Hazards and Earth System Sciences, 11(2), 333-341.
Blakeslee, R. J., Christian, H. J., & Vonnegut, B. (1989). Electrical measurements over thunderstorms. Journal of Geophysical Research: Atmospheres, 94(D11), 13135-13140.
Bleier, T., Dunson, C., Maniscalco, M., Bryant, N., Bambery, R., & Freund, F. (2009). Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5. 4 earthquake. Natural Hazards and Earth System Sciences, 9(2), 585-603.
Bluestein, H. B. (2013). Severe convective storms and tornadoes. Springer, 10, 978-3.
Borra, J. P., Roos, R. A., Renard, D., Lazar, H., Goldman, A., & Goldman, M. (1997). Electrical and chemical consequences of point discharges in a forest during a mist and a thunderstorm. Journal of Physics D: Applied Physics, 30(1), 84.
Ccopa, J. A., Tacza, J., Raulin, J. P., & Morales, C. A. (2021). Estimation of thunderstorms occurrence from lightning cluster recorded by WWLLN and its comparison with the ‘universal’Carnegie curve. Journal of Atmospheric and Solar-Terrestrial Physics, 221, 105682.
Chalmers, J. A. (1949). 1967 Atmospheric Electricity. Pergamon Press London, 79, 286
Chalmers, J. A. (1967). Atmospheric electricity pergamon press. New York, 128.
Chalmers, J. A. (2013). Atmospheric Electricity: International Series of Monographs in Natural Philosophy (Vol. 11). Elsevier.
Chalmers, J. A. (2013). Atmospheric Electricity: International Series of Monographs in Natural Philosophy (Vol. 11). Elsevier.
Chandrashekara, M. S., Sannappa, J., & Paramesh, L. (2006). Studies on atmospheric electrical conductivity related to radon and its progeny concentrations in the lower atmosphere at Mysore. Atmospheric Environment, 40(1), 87-95.
Chiang, S. C. (2020). Ground conductivity measurements with double tube Gerdien Condenser. In Master dissertation, National Cheng Kung University.
Chiu, C. H. (2012), The measurement of atmospheric DC E-field by Sounding Balloon, Institute of Space and Plasma Sciences, National Cheng Kung University.
Cho, M., & Rycroft, M. J. (1998). Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 60(7-9), 871-888.
Chuang, C. H. (2015). The Simulation of Lightning Electric Field and The Feasibility Study of Artificial Discharge. In Master dissertation, National Cheng Kung University.
Chubb, J. (2015). Limitations on the performance of ‘field mill’fieldmeters with alternating electric fields. Journal of Electrostatics, 78, 1-3.
Chubb, J. N. (1990). Two new designs of'field mill'type fieldmeters not requiring earthing of rotating chopper. IEEE Transactions on Industry Applications, 26(6), 1178-1181.
Cui, Y., Yuan, H., Song, X., Zhao, L., Liu, Y., & Lin, L. (2017). Model, design, and testing of field mill sensors for measuring electric fields under high-voltage direct-current power lines. IEEE Transactions on Industrial Electronics, 65(1), 608-615.
Cummer, S. A., Frey, H. U., Mende, S. B., Hsu, R. R., Su, H. T., Chen, A. B., ... & Takahashi, Y. (2006). Simultaneous radio and satellite optical measurements of high‐altitude sprite current and lightning continuing current. Journal of Geophysical Research: Space Physics, 111(A10).
Cummins, K. L., Wilson, J. G., & Eichenbaum, A. S. (2019). The impact of cloud-to-ground lightning type on the differences in return stroke peak current over land and ocean. IEEE Access, 7, 174774-174781.
De Mendonca, R. R. S., Raulin, J. P., Makhmutov, V. S., Stozhkov, Y. I., Kvashnin, A. N., Maksumov, O. S., ... & Fernandez, G. (2009). Observation of cosmic ray and electric field variations in the surface atmosphere. Bulletin of the Russian Academy of Sciences: Physics, 73(3), 404-406.
Deshpande, C. G., & Kamra, A. K. (2001). Diurnal variations of the atmospheric electric field and conductivity at Maitri, Antarctica. Journal of Geophysical Research: Atmospheres, 106(D13), 14207-14218.
Dhanorkar, S., & Kamra, A. K. (2001). Effect of coagulation on the particle charge distribution and air conductivity. Journal of Geophysical Research: Atmospheres, 106(D11), 12055-12065.
Eftaxias, K., Kapiris, P., Polygiannakis, J., Peratzakis, A., Kopanas, J., Antonopoulos, G., & Rigas, D. (2003). Experience of short term earthquake precursors with VLF–VHF electromagnetic emissions. Natural Hazards and Earth System Sciences, 3(3/4), 217-228.
Filippov, A. K. (1974). Thunderstorms in Eastern Siberia. Hydrometeoizdat: Leningrad, Russia, 75.
Franklin, B. (1752). XLIV. A letter from Mr. Franklin to Mr. Peter Collinson, FRS concerning the effects of lightning. Philosophical Transactions of the Royal Society of London, (47), 289-291.
Freund, F. (2011). Pre-earthquake signals: Underlying physical processes. Journal of Asian Earth Sciences, 41(4-5), 383-400.
Freund, F. T., Kulahci, I. G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., & Freund, M. M. (2009). Air ionization at rock surfaces and pre-earthquake signals. Journal of Atmospheric and Solar-Terrestrial Physics, 71(17-18), 1824-1834.
Fritzen, C. L., Fernandes, W. A., Notari, A. C., Dias, W. M., Rescigno, G. M., Rodrigues, T. R., & Lacerda, M. (2019). Electric field sensor calibration using Horizontal parallel plates. In 2019 International Symposium on Lightning Protection (XV SIPDA) (pp. 1-5). IEEE.
G. Baumgaertner, A. J., Thayer, J. P., Neely III, R. R., & Lucas, G. (2013). Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1 (WACCM) model simulations. Journal of Geophysical Research: Atmospheres, 118(16), 9221-9232.
Ghosh, D., Deb, A., & Sengupta, R. (2009). Anomalous radon emission as precursor of earthquake. Journal of Applied Geophysics, 69(2), 67-81.
Gołkowski, M., Kubicki, M., Cohen, M., Kułak, A., & Inan, U. S. (2011). Estimation of global lightning activity and observations of atmospheric electric field. Acta Geophysica, 59(1), 183-204.
Grunskaya, L., Zolotov, A., Nazarov, S., & Lavrova, M. (2021, August). Observation of precursors of large seismic events according to monitoring of the electric field of the surface layer of the atmosphere. In IOP Conference Series: Earth and Environmental Science (Vol. 840, No. 1, p. 012016). IOP Publishing.
Hao, J. G., Tang, T. M., & Li, D. R. (1998). A kind of information on short-term and imminent earthquake precursors—research on atmospheric electric field anomalies before earthquakes. Acta Seismologica Sinica, 11(1), 121-131.
Harnwell, G. P., & Van Voorhis, S. N. (1933). An electrostatic generating voltmeter. Review of Scientific Instruments, 4(10), 540-541.
Harrison, R. G., & Carslaw, K. S. (2003). Ion‐aerosol‐cloud processes in the lower atmosphere. Reviews of Geophysics, 41(3)
Harrison, R. G. (2004). Long-range correlations in measurements of the global atmospheric electric circuit. Journal of atmospheric and solar-terrestrial physics, 66(13-14), 1127-1133.
Harrison, R. G. (2006). Urban smoke concentrations at Kew, London, 1898–2004. Atmospheric Environment, 40(18), 3327-3332.
Harrison, R. G. (2013). The carnegie curve. Surveys in Geophysics, 34(2), 209-232.
Harrison, R. G., & Marlton, G. J. (2020). Fair weather electric field meter for atmospheric science platforms. Journal of Electrostatics, 107, 103489.
Harrison, R. G., Aplin, K. L., & Rycroft, M. J. (2010). Atmospheric electricity coupling between earthquake regions and the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 72(5-6), 376-381.
Hauksson, E. (1981). Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. Journal of Geophysical Research: Solid Earth, 86(B10), 9397-9410.
Hauksson, E., & Goddard, J. G. (1981). Radon earthquake precursor studies in Iceland. Journal of Geophysical Research: Solid Earth, 86(B8), 7037-7054.
Hayakawa, M. (2015). Earthquake prediction with radio techniques. John Wiley & Sons.
Hayakawa, M., & Molchanov, O. A. (2004). Summary report of NASDA's earthquake remote sensing frontier project. Physics and Chemistry of the Earth, Parts A/B/C, 29(4-9), 617-625.
Haynes, J. (2012). BalloonSat Based Investigation of Atmospheric Electric Potential for Sustainable Energy Production.
Hays, P. B., & Roble, R. G. (1979). A quasi‐static model of global atmospheric electricity, 1. The lower atmosphere. Journal of Geophysical Research: Space Physics, 84(A7), 3291-3305.
Horie, T. A. K. U. M. I., Maekawa, S. H. I. N. K. O., Yamauchi, T. A. K. E. S. H. I., & Hayakawa, M. A. S. A. S. H. I. (2007). A possible effect of ionospheric perturbations associated with the Sumatra earthquake, as revealed from subionospheric very‐low‐frequency (VLF) propagation (NWC‐Japan). International Journal of Remote Sensing, 28(13-14), 3133-3139.
Hoppel, W. A. (1986). Atmospheric electricity in the planetary boundary layer. The earth's electrical environment.
Houze Jr, R. A. (2014). Cloud dynamics. Academic press.
Hsu, R. R., Chen, A. B., Kuo, C. L., Su, H. T., Frey, H., Mende, S., ... & Lee, L. C. (2009, April). On the global occurrence and impacts of transient luminous events (TLEs). In AIP Conference Proceedings (Vol. 1118, No. 1, pp. 99-107). American Institute of Physics.
Ishii, K., Hayashi, S., & Fujibe, F. (2014). Statistical analysis of temporal and spatial distributions of cloud-to-ground lightning in Japan from 2002 to 2008. Journal of Atmospheric Electricity, 34(2), 79-86.
Israel, H. (1970). Atmospheric electricity, vol. I. Israel Program for Sci. Transl. & NSF, Jerusalem.
Israël, H. (1971). Atmospheric Electricity, vol. I: Fundamentals, Conductivity, Ions. Israel Program for Scientific Translations Jerusalem 1971. see also, 74.
Israel, H. (1973). Atmospheric Electricity: Vol. II: Fields, Charges. Currents.
Israelsson, S., & Tammet, H. (2001). Variation of fair weather atmospheric electricity at Marsta Observatory, Sweden, 1993–1998. Journal of atmospheric and solar-terrestrial physics, 63(16), 1693-1703.
Jayaratne, E. R., & Verma, T. S. (2004). Environmental aerosols and their effect on the Earth’s local fair-weather electric field. Meteorology and atmospheric physics, 86(3), 275-280.
Jianguo, H., Tianming, T., & Derui, L. (2000). Progress in the research on atmospheric electric field anomaly as an index for short-impending prediction of earthquakes. Journal of Earthquake Prediction Research, 8(3), 241-255.
Jin, X., Bu, J., Tian, J., Wu, X., Qiu, G., Ma, L., ... & Zhang, L. (2021). The relationship between atmospheric potential gradient descent along with negative potential gradient anomalies and earthquake precursors. Arabian Journal of Geosciences, 14(14), 1-13.
Johnston, M. J. S. (1997). Review of electric and magnetic fields accompanying seismic and volcanic activity. Surveys in geophysics, 18(5), 441-476.
Kachakhidze, N., Kachakhidze, M., Kereselidze, Z., & Ramishvili, G. (2009). Specific variations of the atmospheric electric field potential gradient as a possible precursor of Caucasus earthquakes. Natural Hazards and Earth System Sciences, 9(4), 1221-1226.
Kasemir, H. W. (1979, July). The atmospheric electric global circuit. In Proceedings of Workshop on the Need for Lightning Observations from Space, NASA CP-2095 (pp. 136-147).
Kastelis, N., & Kourtidis, K. (2016). Characteristics of the atmospheric electric field and correlation with CO 2 at a rural site in southern Balkans. Earth, Planets and Space, 68(1), 1-15.
Kellogg, P.J., M. Weed (1968) Balloon measurements of ionospheric E-fields Proceedings of Fourth International Conference on the Universal Aspects of Atmospheric Electricity, Tokyo.
Kelvin, L. (1860). Electricity atmospheric. Nichols Cyclopedia.
Kondo, G. The variation of the atmospheric electric field at the time of earthquake. Kakioka Magnet. Observ. Mem. 1968, 13, 11–23.
Krehbiel, P. R. (1986), The Earth's electrical environment: 8. The electrical structure of thunderstorms, pp. 91, National Academies Press, Washington.
Krehbiel, P. R., Riousset, J. A., Pasko, V. P., Thomas, R. J., Rison, W., Stanley, M. A., & Edens, H. E. (2008). Upward electrical discharges from thunderstorms. Nature Geoscience, 1(4), 233-237.
Krehbiel, P., Riousset, J., Pasko, V., Thomas, R., Rison, W., Stanley, M., & Edens, H. (2008). Supplementary Information to ‘Upward Electrical Discharges from Thunderstorms’.
Kubicki, M., Odzimek, A., & Neska, M. (2016). Relationship of ground-level aerosol concentration and atmospheric electric field at three observation sites in the Arctic, Antarctic and Europe. Atmospheric Research, 178, 329-346.
Kudintseva, I. G., Nickolaenko, A. P., Rycroft, M. J., & Odzimek, A. (2016). AC and DC global electric circuit properties and the height profile of atmospheric conductivity. Annals of geophysics, 59(5), 0545.
Kuo, C. L., Huba, J. D., Joyce, G., & Lee, L. C. (2011). Ionosphere plasma bubbles and density variations induced by pre‐earthquake rock currents and associated surface charges. Journal of Geophysical Research: Space Physics, 116(A10).
Lidvansky, A. S. (2003). The effect of the electric field of the atmosphere on cosmic rays. Journal of Physics G: Nuclear and Particle Physics, 29(5), 925.
Linke, F. (1904). Luftelektrische Messungen bei zwölf Ballonfahrten. Abhandlungen der Gesellschaft der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse, 3, 1-1.
Liperovsky, V. A., Meister, C. V., Liperovskaya, E. V., & Bogdanov, V. V. (2008). On the generation of electric field and infrared radiation in aerosol clouds due to radon emanation in the atmosphere before earthquakes. Natural Hazards and Earth System Sciences, 8(5), 1199-1205.
Liu, C., Williams, E. R., Zipser, E. J., & Burns, G. (2010). Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. Journal of the atmospheric sciences, 67(2), 309-323.
Liu, J. Y., Chen, C. H., Chen, Y. I., Yang, W. H., Oyama, K. I., & Kuo, K. W. (2010). A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007. Journal of Asian Earth Sciences, 39(1-2), 76-80.
Liu, J. Y., Chen, Y. I., Pulinets, S. A., Tsai, Y. B., & Chuo, Y. J. (2000). Seismo‐ionospheric signatures prior to M≥ 6.0 Taiwan earthquakes. Geophysical research letters, 27(19), 3113-3116.
Livingston, J. M., & Krider, E. P. (1978). Electric fields produced by Florida thunderstorms. Journal of Geophysical Research: Oceans, 83(C1), 385-401.
Lueder, H. (1943). Elektrische Registrierung von heranziehenden Gewittern und die Feinstruktur des luftelektrischen Gewitterfeldes. Verlag nicht ermittelbar.
MacGorman, D. R., Rust, W. D., & Rust, W. D. (1998). The electrical nature of storms. Oxford University Press on Demand.
Mach, D. M., Blakeslee, R. J., & Bateman, M. G. (2011). Global electric circuit implications of combined aircraft storm electric current measurements and satellite‐based diurnal lightning statistics. Journal of Geophysical Research: Atmospheres, 116(D5).
Making, M., & Ogawa, T. (1984). Responses of atmospheric electric field and air-earth current to variations of conductivity profiles. Journal of atmospheric and terrestrial physics, 46(5), 431-445.
Mapleson, W. W., & Whitlock, W. S. (1955). Apparatus for the accurate and continuous measurement of the earth's electric field. Journal of Atmospheric and Terrestrial Physics, 7, 61-72.
Markson, R. (1983). Solar modulation of fair-weather and thunderstorm electrification and a proposed program to test an atmospheric electrical Sun-weather mechanism. Weather and climate responses to solar variations, 323.
Markson, R. (2007). The global circuit intensity: Its measurement and variation over the last 50 years. Bulletin of the American Meteorological Society, 88(2), 223-242.
Marshall, T. C., Stolzenburg, M., Krehbiel, P. R., Lund, N. R., & Maggio, C. R. (2009). Electrical evolution during the decay stage of New Mexico thunderstorms. Journal of Geophysical Research: Atmospheres, 114(D2).
Mauchly, S. J. (1921). Note on the diurnal variation of the atmospheric electric potential gradient. Phys. Rev, 18(2), 161-162.
Mauchly, S. J. (1923). On the diurnal variation of the potential gradient of atmospheric electricity. Terrestrial Magnetism and Atmospheric Electricity, 28(3), 61-81.
Mezuman, K., Price, C., & Galanti, E. (2014). On the spatial and temporal distribution of global thunderstorm cells. Environmental Research Letters, 9(12), 124023.
Moore, C. B., & Vonnegut, B. (1977). The thundercloud. Lightning: Physics of Lightning, Volume 1 & 2, 1, 51.
Mozer, F. S., & Serlin, R. (1969). Magnetospheric electric field measurements with balloons. Journal of Geophysical Research, 74(19), 4739-4754.
Nagaraja, K., Prasad, B. S. N., Srinivas, N., & Madhava, M. S. (2006). Electrical conductivity near the Earth's surface: Ion–aerosol model. Journal of atmospheric and solar-terrestrial physics, 68(7), 757-768.
Odzimek, A., & Lester, M. (2009). Modelling the Earth’s global atmospheric electric circuit—Development, challenges and directions. Publs. Inst. Geophys. Pol. Acad. Sci.(eds) Baranski P and Kubicki M, D-73 (214).
Odzimek, A., Lester, M., & Kubicki, M. (2010). EGATEC: A new high‐resolution engineering model of the global atmospheric electric circuit—Currents in the lower atmosphere. Journal of Geophysical Research: Atmospheres, 115(D18).
Omori, Y., Nagahama, H., Kawada, Y., Yasuoka, Y., Ishikawa, T., Tokonami, S., & Shinogi, M. (2009). Preseismic alteration of atmospheric electrical conditions due to anomalous radon emanation. Physics and Chemistry of the Earth, Parts A/B/C, 34(6-7), 435-440.
Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., & Taylor, P. (2007). Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics, 431(1-4), 211-220.
Pasko, V. P. (2010). Recent advances in theory of transient luminous events. Journal of Geophysical Research: Space Physics, 115(A6).
Pierce, E. T. (1976). Atmospheric electricity and earthquake prediction. Geophysical Research Letters, 3(3), 185-188.
Pulinets, S., & Boyarchuk, K. (2004). Ionospheric precursors of earthquakes. Springer Science & Business Media.
Pustovalov, K. N., & Nagorskiy, P. M. (2018). Response in the surface atmospheric electric field to the passage of isolated air mass cumulonimbus clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 172, 33-39.
Rakov, V. A., & Uman, M. A. (2003). Lightning: physics and effects. Cambridge university press.
Ramu, M. S., & Vohra, K. G. (1969). Investigations on radioactive equilibrium in the lower atmosphere between radon and its short‐lived decay products. Tellus, 21(3), 395-403.
Roble, R. G., & Hays, P. B. (1979). A Quasi‐static model of global atmospheric electricity 2. Electrical coupling between the upper and lower atmosphere. Journal of Geophysical Research: Space Physics, 84(A12), 7247-7256.
Rodger, C. J., Werner, S., Brundell, J. B., Lay, E. H., Thomson, N. R., Holzworth, R. H., & Dowden, R. L. (2006, December). Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study. In Annales Geophysicae (Vol. 24, No. 12, pp. 3197-3214). Copernicus GmbH.
Rosen, J. M., Hofmann, D. J., Gringel, W., Berlinski, J., Michnowski, S., Morita, Y., ... & Olson, D. (1982). Results of an international workshop on atmospheric electrical measurements. Journal of Geophysical Research: Oceans, 87(C2), 1219-1224.
Rycroft, M. J., Harrison, R. G., Nicoll, K. A., & Mareev, E. A. (2008). An overview of Earth’s global electric circuit and atmospheric conductivity. Planetary Atmospheric Electricity, 83-105.
Rycroft, M. J., Israelsson, S., & Price, C. (2000). The global atmospheric electric circuit, solar activity and climate change. Journal of Atmospheric and Solar-Terrestrial Physics, 62(17-18), 1563-1576.
Rycroft, M. J., Nicoll, K. A., Aplin, K. L., & Harrison, R. G. (2012). Recent advances in global electric circuit coupling between the space environment and the troposphere. Journal of Atmospheric and Solar-Terrestrial Physics, 90, 198-211.
Rycroft, M. J., Odzimek, A., Arnold, N. F., Füllekrug, M., Kułak, A., & Neubert, T. (2007). New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites. Journal of Atmospheric and Solar-Terrestrial Physics, 69(17-18), 2485-2509.
Sapkota, B. K., & Varshneya, N. C. (1990). On the global atmospheric electrical circuit. Journal of atmospheric and terrestrial physics, 52(1), 1-20.
Secker, P. E. (1975). The desing of simple instruments for measurement of charge on insulating surfaces. Journal of electrostatics, 1(1), 27-36.
Secker, P. E., & Chubb, J. N. (1984). Instrumentation for electrostatic measurements. Journal of electrostatics, 16(1), 1-19.
Siingh, D., Singh, R. P., Gopalakrishnan, V., Selvaraj, C., & Panneerselvam, C. (2013). Fair-weather atmospheric electricity study at Maitri (Antarctica). Earth, Planets and Space, 65(12), 1541-1553.
Silva, H. G., Bezzeghoud, M., Reis, A. H., Rosa, R. N., Tlemçani, M., Araújo, A. A., Serrano, C., Borges, J. F., Caldeira, B., & Biagi, P. F. (2011). Atmospheric electrical field decrease during the M= 4.1 Sousel earthquake (Portugal). Natural Hazards and Earth System Sciences, 11(3), 987-991.
Silva, H. G., Conceição, R., Melgão, M., Nicoll, K., Mendes, P. B., Tlemçani, M., ... & Harrison, R. G. (2014). Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence. Environmental Research Letters, 9(11), 114025.
Sun, Y. Y., Liu, J. Y., Lin, C. Y., Tsai, H. F., Chang, L. C., Chen, C. Y., & Chen, C. H. (2016). Ionospheric F2 region perturbed by the 25 April 2015 Nepal earthquake. Journal of Geophysical Research: Space Physics, 121(6), 5778-5784.
Tant, P., Bolsens, B., Sels, T., Van Dommelen, D., Driesen, J., & Belmans, R. (2007). Design and application of a field mill as a high-voltage DC meter. IEEE Transactions on Instrumentation and Measurement, 56(4), 1459-1464.
Thomas, J. N. (2005). Lightning-driven electric and magnetic fields measured in the stratosphere: Implications for sprites. University of Washington.
Thomson, W. (1872). Reprint of papers on electrostatics and magnetism. Macmillan & Company.
Tinsley, B. A., & Zhou, L. (2006). Initial results of a global circuit model with variable stratospheric and tropospheric aerosols. Journal of Geophysical Research: Atmospheres, 111(D16).
Torreson, O. W. (1946). Ocean atmospheric-electric results. Oceanography III: Scientific results of Cruise VII during 1928-1929 under Command of Captain JP Ault.
Tuma, J. (1899). Beiträge zur Kenntniss der atmosphärischen Elektricität III. Sitz. Ak. Wiss. Wien, 227-260.
TURNS, B. F. (2006). Benjamin Franklin and lightning rods. Physics Today, 59(1), 42.
Uyeda, S. (2013). On earthquake prediction in Japan. Proceedings of the Japan Academy, Series B, 89(9), 391-400.
Wahlin, L. (1986). Atmospheric electrostatics.
Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric science: an introductory survey (Vol. 92). Elsevier.
Whipple, F. J. W. (1936). Point-discharge in the electric field of the Earth. Geophys. Mem. VII, 68, 1-20.
Williams, E. R. (1989). The tripole structure of thunderstorms. Journal of Geophysical Research: Atmospheres, 94(D11), 13151-13167.
Williams, E., Rothkin, K., Stevenson, D., & Boccippio, D. (2000). Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. Journal of Applied Meteorology, 39(12), 2223-2230.
Wilson, C. T. R. (1906, November). On the measurement of the earth-air current and on the origin of atmospheric electricity. In Proc. Cambridge Philos. Soc (Vol. 13, No. 6, pp. 363-382).
Wilson, C. T. R. (1921). III. Investigations on lighting discharges and on the electric field of thunderstorms. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221(582-593), 73-115.
Wilson, C. T. R. (1924). The electric field of a thundercloud and some of its effects. Proceedings of the Physical Society of London (1874-1925), 37(1), 32D.
Woith, H. (2015). Radon earthquake precursor: A short review. The European Physical Journal Special Topics, 224(4), 611-627.
Xu, B., Huang, C., & Chen, B. (2013). Observation of the variations of the atmospheric electric field at YBJ, Tibet. Meteorology and Atmospheric Physics, 121(1), 99-107.
Yaniv, R., Yair, Y., Price, C., Mkrtchyan, H., Lynn, B., & Reymers, A. (2017). Ground-based measurements of the vertical E-field in mountainous regions and the “Austausch” effect. Atmospheric Research, 189, 127-133.
Yeh, E. C. (2018). The Variation of the Vertical Electric Field at Ground associated with Earthquakes and Severe Weather. In Master dissertation, National Cheng Kung University.
Zhou, L., & Tinsley, B. A. (2010). Global circuit model with clouds. Journal of the atmospheric sciences, 67(4), 1143-1156.
Ziegler, C. L., MacGorman, D. R., Dye, J. E., & Ray, P. S. (1991). A model evaluation of noninductive graupel‐ice charging in the early electrification of a mountain thunderstorm. Journal of Geophysical Research: Atmospheres, 96(D7), 12833-12855.
Zou, Z., Cui, X., & Lu, T. (2015). Measurement method of charge densities at ground level under high‐voltage direct current conductor. IET Science, Measurement & Technology, 9(8), 973-978.
校內:2026-01-11公開