簡易檢索 / 詳目顯示

研究生: 莊嘉文
Chuang, Chia-Wen
論文名稱: 地表電場監控網絡:儀器建置與理論模型於大氣與太空科學之應用
The Surface Electric Field Monitoring Network: Instrumentation, Model, and Application in Atmosphere and Space Sciences
指導教授: 陳炳志
Chen, Bing-Chih
學位類別: 博士
Doctor
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 147
中文關鍵詞: 大氣電學全球大域電路大氣電場電場磨雷暴系統地震前兆
外文關鍵詞: Atmospheric Electricity, Global Electrical Circuit, Atmospheric Electric Field, Electric Field Mill, Thunderstorm, Earthquake Precursor
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大氣電學是研究地表以上、大氣層到電離層底部中發生的各種電學現象及其生成和相互作用的物理過程。地表與電離層底部之間的300kV電壓差驅使了電荷在其中流動並構成了電循環,這循環可以由歐姆定律所模擬的大域電路(global electrical circuit, GEC)來做解釋,其中包含了三個主要參數:大氣電場(atmospheric electric field)、大氣電流(atmospheric current)以及大氣導電率(atmospheric conductivity)。其中,地表的大氣電場量測可以做為閃電危害的預警之用,而至今也已經被大量應用於生活中以增加戶外活動的安全性並為企業降低設備損害及營運風險,如航空產業,太空產業。除此之外,近年來的研究顯示地震發生前後之地表電場的變化可能是研究地震前兆的一種有效的方式,這也成為一個新興的重要探索課題。
    本工作中自主開了一套具有高時間解析度、高精準度、高度靈敏以及量測範圍可調整的電場量測儀器(electric field mill, EFM),並於觀測區域中架設多個觀測站點以建構地表電場監控網絡。同時,為降低人為活動以及周遭環境對於地表電場觀測的擾動,站點的架設位置通常會選擇在較為空曠且無人之區域,因此每個EFM測站都具有獨立的電力系統以及無線網路傳輸系統,並透過處理器進行次系統整合、資料處理以及系統排成,以達成遠端獨立觀測之目的。有別於過去只依靠單一測站觀測,透過多個站點對於單一電場擾動事件進行觀測可以從不同的時間以及空間對於事件做全方位的分析,此作法可以有效提升電場資料的可信度以及可用度。
    現階段的觀測網絡由架設於台南市區的三個站點所組成(成功大學、東區、新化區),每個站點相距約為10km,而其中兩個站點位於地震帶上方(後甲里斷層、新化斷層)以就近觀測地震活動對於地表電場的影響。該觀測網路於2021年初觀測至2022年底,累積觀測了超過800天的電場晝夜變化。於天氣晴朗下的地表電場觀測結果指出,小區域的電場觀測與全球的電場晝夜變化(Carnegie Curve)不具備相同趨勢,而是由當地因素(如氣候、空氣汙染、環境)主導小區域電場的變化,其中又以與日照強度及PM2.5等因子展現出較強的正關聯性。此外,在伴隨降雨的擾動電場觀測事件中,透過地表電場波形的分析並對應過去研究所歸納出的分類,可以發現本研究中觀測到的單胞雷雨雲擾動事件達90%發生於雷雨雲系統發展的成熟期與消散期,這與過去研究指出的雲對地放電傾向的發生階段相符。
    緊接著,透過本工作中多站觀測的優勢,藉由三個站點對於單胞雷雨雲擾動過程中的相對時間及空間資訊,來還原出雲層內部的電荷分佈結構。此演算法成功分析出於系統運作期間內觀測到的數個具有較顯著電場波形變化的單胞雷雨雲電荷結構,並還原出雷雨雲經過測站上方對於地表電場的擾動情形,且還原出的電場模式相似度皆高過85%。相較於過去要探索雲層內部電荷結構僅能仰賴困難且危險的現地量測才能執行,此方式僅需多個地表觀測站的電場資料就能重新建構出完整的雲內電荷結構,對於閃電預警的精準度和實用度的提升是一項重要的技術性突破。
    由於觀測網絡處於地震發生頻繁的台灣,本工作也篩選出於運作期間經歷的10個具有不同特性的地震以進行地震前兆之分析。在M=3.1地震事件中,位於震央上方的測站觀測到在地震前3.5天電場相較於其他測站約有0.5倍標準差的負偏差,並在地震發生後回升至相同水平。這一結果與目前最廣為接受的結論一致,即岩石擠壓導致地表氡(radon)濃度增加,進而使地表導電率增加以及電場減弱。然而,另一個台灣近10年來最大的M=6.8強震中卻沒有觀測到上述的現象,取而代之的則是在地震後明顯的正突波,並在數小時後消失。這些結果或許能指出,相較於地震強度,距離震央的距離才是能否觀測到地震前兆的主要因素。

    The concept of a global atmospheric electrical circuit explains the generation and variation of the atmospheric electric field (hereafter E-field), which exists under all meteorological conditions and drives the charge flow around the Earth worldwide. Thus far, many natural phenomena have been observed accompanied by surface E-field disturbances, such as lightning, thunderstorms, and even earthquakes; therefore, E-field observations are also widely used in disaster warnings. This work is dedicated to establishing a dense surface E-field monitoring network through accurate and stand-alone observation stations and expanding the application of E-field observation in disaster warning through data analysis.
    This work presents a self-developed electric field mill (hereafter EFM) for atmospheric electric field measurements on the Earth’s surface, and the characteristics of high speed, high precision, sensitivity, and adjustable measurement range make EFM suitable for various observation requirements. Furthermore, the instrument was upgraded to a stand-alone operating E-field observation station by adding mechanical structure and subsystems (e.g., renewable energy system, 4G wireless transmitter, processor board, and weather sensor). Since 2021, Tainan City has successfully set up three E-field observation stations and recorded more than 800 days of E-field data. Each station was functionally tested with an in-lab E-field calibrator before setup, and outdoor calibrations are performed regularly during the system operation to maintain the accuracy of measurements.
    The observation data could be divided into fair-weather E-field and disturbed E-field accompanied by precipitation through the automatic data pipeline. The analysis results indicated that the small-area E-field variation did not follow the Carnegie curve because local effects (aerosols, weather conditions, and environment) masked the variations of the global electrical circuit. In addition, the analysis of the disturbed E-field showed that more than 90% of the single-cell thunderstorms observed in the surface E-field could be classified as mature and dissipating stages. Each disturbance lasted approximately 34 minutes and was accompanied by an average of 1.4 times E-field phase reversals. Among them, the negative reversal of the surface electric field caused by the negative charge layer was relatively strong and frequent. Eventually, triangulation was used to reconstruct the charge structure of four distinctive single-cell thunderstorm events and restore the surface E-field responses during the passage of clouds. The correlation coefficients between the simulation and the observation were higher than 85%, and the trajectory and speed of the thunderclouds could be successfully reproduced. Furthermore, some preliminary conclusions about earthquake precursors were drawn by analyzing the surface E-field.

    摘要 I Abstract IV Acknowledgment VI Table of Contents VII List of Tables XII List of Figures XIII Chapter 1. Introduction 1 1.1 Global Atmospheric Electrical Circuit 1 1.2 Atmospheric Electrical Field 3 1.2.1 Fair-weather electric field 4 1.2.2 Disturbed electric field 8 1.3 Electric Field Disturbance 9 1.3.1 Thunderstorm 9 1.3.2 Response in the surface electric field 13 1.4 Motivation 18 Chapter 2. Surface Electric Field Measurement 21 2.1 Instruments and Measurements 21 2.1.1 Electrostatic field meter 21 2.1.2 Electric field mill 24 2.2 Principle of Electric Field Mill 26 2.3 Mechanical Structure 30 2.4 Performance Estimation 33 2.5 Electronic System 35 2.5.1 Signal conditioning 36 2.5.2 Electrical power system & Motor control 44 2.6 In-Lab Calibration 45 2.6.1 Electric field calibration system 46 2.6.2 Calibration system configuration 47 2.6.3 Electric field profile simulation 49 2.6.4 Functional test 51 2.7 On-Site Calibration 52 Chapter 3. Electric Field Observation System 59 3.1 Solar Power System 60 3.2 Sensor Module 65 3.3 Processor Board 67 3.3.1 Processor scheduling 69 3.3.2 Science/SoH data processing 70 3.3.3 Data upload 72 3.4 Mechanical Structure 73 Chapter 4. Surface Electric Field Observation 76 4.1 Electric Field Data Pipeline 77 4.1.1 Level-1 processing 78 4.1.2 Level-2 processing 79 4.2 Surface Electric Field Diurnal Cycle 80 4.2.1 Spectrum analysis 80 4.2.2 Diurnal cycle of electric field 84 4.2.3 Fair-weather electric field 85 4.3 Regional Effects 90 4.3.1 Weather conditions 91 4.3.1 Aerosol pollution 93 4.3.4 Environmental factors at Station B 95 Chapter 5. Surface Electric Field Disturbance 98 5.1 Processing of Thunderstorm Events 100 5.2 Classification of Electric Field Responses to Thunderstorms 102 5.3 Modeling of Charge Distribution in Thunderclouds 108 5.3.1 Step 1: 109 5.3.2 Step 2: 110 5.3.3 Step 3: 111 5.3.4 Step 4: 115 5.4 Pre-Earthquake Electric Field Disturbance 122 (1) M = 6.6 earthquake in Tainan, Taiwan, on February 6, 2016, at 03:57 local time. 124 (2) M = 6.8 earthquake in Taitung, Taiwan, on September 18, 2022, at 14:44 local time. 125 (3) M = 3.1 earthquake in Tainan, Taiwan, on April 9, 2021, at 14:14 local time. 127 Chapter 6. Conclusion and Future Works 130 6.1 Conclusion 130 6.2 Future Works 132 6.2.1 Large-area E-field monitoring network 132 6.2.2 Autonomous lightning warning system 132 6.2.3 Atmospheric conductivity measurement 133 Reference 135

    Afreen, S., Victor, N. J., Nazir, S., Siingh, D., Bashir, G., Ahmad, N., Ahmad, S. J., & Singh, R. P. (2022). Fair-weather atmospheric electric field measurements at Gulmarg, India. Journal of Earth System Science, 131(1), 1-19.
    Ahrens, C. D. (2014). Essentials of meteorology: an invitation to the atmosphere. Cengage Learning.
    Akhoondzadeh, M. (2012). Anomalous TEC variations associated with the powerful Tohoku earthquake of 11 March 2011. Natural Hazards and Earth System Sciences, 12(5), 1453-1462.
    Aplin, K. L. (2012). Smoke emissions from industrial western Scotland in 1859 inferred from Lord Kelvin’s atmospheric electricity measurements. Atmospheric Environment, 50, 373-376.
    Aplin, K. L., & Harrison, R. G. (2013). Lord Kelvin's atmospheric electricity measurements. History of Geo-and Space Sciences, 4(2), 83-95.
    Aubrecht, L., Koller, J., & Stanek, Z. (2000). Onset voltages of atmospheric corona discharges on plants. Czechoslovak Journal of Physics, 50(3), 313-318.
    Auden, E. C., Novak, J., Salazar, R. W., & Hinckley, A. (2017). Uncertainty Analysis of an Electric Field Mill Calibration System (No. SAND2017-4999C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
    Bai, R., Cui, X., Lu, T., Zhou, X., He, J., Hou, H., ... & Li, X. (2013). Experimental study on ion-flow fields inside greenhouse models underneath the DC test wire. IEEE transactions on power delivery, 28(4), 2154-2161.
    Bailey, J. C., Blakeslee, R. J., Buechler, D. E., & Christian, H. J. (2007, August). Diurnal lightning distributions as observed by the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). In 13th International Conference on Atmospheric Electricity.
    Bateman, M. G., Stewart, M. F., Podgorny, S. J., Christian, H. J., Mach, D. M., Blakeslee, R. J., ... & Daskar, D. (2007). A low-noise, microprocessor-controlled, internally digitizing rotating-vane electric field mill for airborne platforms. Journal of Atmospheric and Oceanic Technology, 24(7), 1245-1255.
    Bennett, A. J., & Harrison, R. G. (2007). Atmospheric electricity in different weather conditions. Weather, 62(10), 277-283.
    Bennett, A. J., & Harrison, R. G. (2008, December). Variability in surface atmospheric electric field measurements. In Journal of Physics: Conference Series (Vol. 142, No. 1, p. 012046). IOP Publishing.
    Bering, I. I. I., & Few, A. A. (1998). The global electric circuit. Physics today, 51(10), 24-30.
    Biagi, P. F., Maggipinto, T., Righetti, F., Loiacono, D., Schiavulli, L., Ligonzo, T., ... & Contadakis, M. E. (2011). The European VLF/LF radio network to search for earthquake precursors: setting up and natural/man-made disturbances. Natural Hazards and Earth System Sciences, 11(2), 333-341.
    Blakeslee, R. J., Christian, H. J., & Vonnegut, B. (1989). Electrical measurements over thunderstorms. Journal of Geophysical Research: Atmospheres, 94(D11), 13135-13140.
    Bleier, T., Dunson, C., Maniscalco, M., Bryant, N., Bambery, R., & Freund, F. (2009). Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5. 4 earthquake. Natural Hazards and Earth System Sciences, 9(2), 585-603.
    Bluestein, H. B. (2013). Severe convective storms and tornadoes. Springer, 10, 978-3.
    Borra, J. P., Roos, R. A., Renard, D., Lazar, H., Goldman, A., & Goldman, M. (1997). Electrical and chemical consequences of point discharges in a forest during a mist and a thunderstorm. Journal of Physics D: Applied Physics, 30(1), 84.
    Ccopa, J. A., Tacza, J., Raulin, J. P., & Morales, C. A. (2021). Estimation of thunderstorms occurrence from lightning cluster recorded by WWLLN and its comparison with the ‘universal’Carnegie curve. Journal of Atmospheric and Solar-Terrestrial Physics, 221, 105682.
    Chalmers, J. A. (1949). 1967 Atmospheric Electricity. Pergamon Press London, 79, 286
    Chalmers, J. A. (1967). Atmospheric electricity pergamon press. New York, 128.
    Chalmers, J. A. (2013). Atmospheric Electricity: International Series of Monographs in Natural Philosophy (Vol. 11). Elsevier.
    Chalmers, J. A. (2013). Atmospheric Electricity: International Series of Monographs in Natural Philosophy (Vol. 11). Elsevier.
    Chandrashekara, M. S., Sannappa, J., & Paramesh, L. (2006). Studies on atmospheric electrical conductivity related to radon and its progeny concentrations in the lower atmosphere at Mysore. Atmospheric Environment, 40(1), 87-95.
    Chiang, S. C. (2020). Ground conductivity measurements with double tube Gerdien Condenser. In Master dissertation, National Cheng Kung University.
    Chiu, C. H. (2012), The measurement of atmospheric DC E-field by Sounding Balloon, Institute of Space and Plasma Sciences, National Cheng Kung University.
    Cho, M., & Rycroft, M. J. (1998). Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 60(7-9), 871-888.
    Chuang, C. H. (2015). The Simulation of Lightning Electric Field and The Feasibility Study of Artificial Discharge. In Master dissertation, National Cheng Kung University.
    Chubb, J. (2015). Limitations on the performance of ‘field mill’fieldmeters with alternating electric fields. Journal of Electrostatics, 78, 1-3.
    Chubb, J. N. (1990). Two new designs of'field mill'type fieldmeters not requiring earthing of rotating chopper. IEEE Transactions on Industry Applications, 26(6), 1178-1181.
    Cui, Y., Yuan, H., Song, X., Zhao, L., Liu, Y., & Lin, L. (2017). Model, design, and testing of field mill sensors for measuring electric fields under high-voltage direct-current power lines. IEEE Transactions on Industrial Electronics, 65(1), 608-615.
    Cummer, S. A., Frey, H. U., Mende, S. B., Hsu, R. R., Su, H. T., Chen, A. B., ... & Takahashi, Y. (2006). Simultaneous radio and satellite optical measurements of high‐altitude sprite current and lightning continuing current. Journal of Geophysical Research: Space Physics, 111(A10).
    Cummins, K. L., Wilson, J. G., & Eichenbaum, A. S. (2019). The impact of cloud-to-ground lightning type on the differences in return stroke peak current over land and ocean. IEEE Access, 7, 174774-174781.
    De Mendonca, R. R. S., Raulin, J. P., Makhmutov, V. S., Stozhkov, Y. I., Kvashnin, A. N., Maksumov, O. S., ... & Fernandez, G. (2009). Observation of cosmic ray and electric field variations in the surface atmosphere. Bulletin of the Russian Academy of Sciences: Physics, 73(3), 404-406.
    Deshpande, C. G., & Kamra, A. K. (2001). Diurnal variations of the atmospheric electric field and conductivity at Maitri, Antarctica. Journal of Geophysical Research: Atmospheres, 106(D13), 14207-14218.
    Dhanorkar, S., & Kamra, A. K. (2001). Effect of coagulation on the particle charge distribution and air conductivity. Journal of Geophysical Research: Atmospheres, 106(D11), 12055-12065.
    Eftaxias, K., Kapiris, P., Polygiannakis, J., Peratzakis, A., Kopanas, J., Antonopoulos, G., & Rigas, D. (2003). Experience of short term earthquake precursors with VLF–VHF electromagnetic emissions. Natural Hazards and Earth System Sciences, 3(3/4), 217-228.
    Filippov, A. K. (1974). Thunderstorms in Eastern Siberia. Hydrometeoizdat: Leningrad, Russia, 75.
    Franklin, B. (1752). XLIV. A letter from Mr. Franklin to Mr. Peter Collinson, FRS concerning the effects of lightning. Philosophical Transactions of the Royal Society of London, (47), 289-291.
    Freund, F. (2011). Pre-earthquake signals: Underlying physical processes. Journal of Asian Earth Sciences, 41(4-5), 383-400.
    Freund, F. T., Kulahci, I. G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., & Freund, M. M. (2009). Air ionization at rock surfaces and pre-earthquake signals. Journal of Atmospheric and Solar-Terrestrial Physics, 71(17-18), 1824-1834.
    Fritzen, C. L., Fernandes, W. A., Notari, A. C., Dias, W. M., Rescigno, G. M., Rodrigues, T. R., & Lacerda, M. (2019). Electric field sensor calibration using Horizontal parallel plates. In 2019 International Symposium on Lightning Protection (XV SIPDA) (pp. 1-5). IEEE.
    G. Baumgaertner, A. J., Thayer, J. P., Neely III, R. R., & Lucas, G. (2013). Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1 (WACCM) model simulations. Journal of Geophysical Research: Atmospheres, 118(16), 9221-9232.
    Ghosh, D., Deb, A., & Sengupta, R. (2009). Anomalous radon emission as precursor of earthquake. Journal of Applied Geophysics, 69(2), 67-81.
    Gołkowski, M., Kubicki, M., Cohen, M., Kułak, A., & Inan, U. S. (2011). Estimation of global lightning activity and observations of atmospheric electric field. Acta Geophysica, 59(1), 183-204.
    Grunskaya, L., Zolotov, A., Nazarov, S., & Lavrova, M. (2021, August). Observation of precursors of large seismic events according to monitoring of the electric field of the surface layer of the atmosphere. In IOP Conference Series: Earth and Environmental Science (Vol. 840, No. 1, p. 012016). IOP Publishing.
    Hao, J. G., Tang, T. M., & Li, D. R. (1998). A kind of information on short-term and imminent earthquake precursors—research on atmospheric electric field anomalies before earthquakes. Acta Seismologica Sinica, 11(1), 121-131.
    Harnwell, G. P., & Van Voorhis, S. N. (1933). An electrostatic generating voltmeter. Review of Scientific Instruments, 4(10), 540-541.
    Harrison, R. G., & Carslaw, K. S. (2003). Ion‐aerosol‐cloud processes in the lower atmosphere. Reviews of Geophysics, 41(3)
    Harrison, R. G. (2004). Long-range correlations in measurements of the global atmospheric electric circuit. Journal of atmospheric and solar-terrestrial physics, 66(13-14), 1127-1133.
    Harrison, R. G. (2006). Urban smoke concentrations at Kew, London, 1898–2004. Atmospheric Environment, 40(18), 3327-3332.
    Harrison, R. G. (2013). The carnegie curve. Surveys in Geophysics, 34(2), 209-232.
    Harrison, R. G., & Marlton, G. J. (2020). Fair weather electric field meter for atmospheric science platforms. Journal of Electrostatics, 107, 103489.
    Harrison, R. G., Aplin, K. L., & Rycroft, M. J. (2010). Atmospheric electricity coupling between earthquake regions and the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 72(5-6), 376-381.
    Hauksson, E. (1981). Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. Journal of Geophysical Research: Solid Earth, 86(B10), 9397-9410.
    Hauksson, E., & Goddard, J. G. (1981). Radon earthquake precursor studies in Iceland. Journal of Geophysical Research: Solid Earth, 86(B8), 7037-7054.
    Hayakawa, M. (2015). Earthquake prediction with radio techniques. John Wiley & Sons.
    Hayakawa, M., & Molchanov, O. A. (2004). Summary report of NASDA's earthquake remote sensing frontier project. Physics and Chemistry of the Earth, Parts A/B/C, 29(4-9), 617-625.
    Haynes, J. (2012). BalloonSat Based Investigation of Atmospheric Electric Potential for Sustainable Energy Production.
    Hays, P. B., & Roble, R. G. (1979). A quasi‐static model of global atmospheric electricity, 1. The lower atmosphere. Journal of Geophysical Research: Space Physics, 84(A7), 3291-3305.
    Horie, T. A. K. U. M. I., Maekawa, S. H. I. N. K. O., Yamauchi, T. A. K. E. S. H. I., & Hayakawa, M. A. S. A. S. H. I. (2007). A possible effect of ionospheric perturbations associated with the Sumatra earthquake, as revealed from subionospheric very‐low‐frequency (VLF) propagation (NWC‐Japan). International Journal of Remote Sensing, 28(13-14), 3133-3139.
    Hoppel, W. A. (1986). Atmospheric electricity in the planetary boundary layer. The earth's electrical environment.
    Houze Jr, R. A. (2014). Cloud dynamics. Academic press.
    Hsu, R. R., Chen, A. B., Kuo, C. L., Su, H. T., Frey, H., Mende, S., ... & Lee, L. C. (2009, April). On the global occurrence and impacts of transient luminous events (TLEs). In AIP Conference Proceedings (Vol. 1118, No. 1, pp. 99-107). American Institute of Physics.
    Ishii, K., Hayashi, S., & Fujibe, F. (2014). Statistical analysis of temporal and spatial distributions of cloud-to-ground lightning in Japan from 2002 to 2008. Journal of Atmospheric Electricity, 34(2), 79-86.
    Israel, H. (1970). Atmospheric electricity, vol. I. Israel Program for Sci. Transl. & NSF, Jerusalem.
    Israël, H. (1971). Atmospheric Electricity, vol. I: Fundamentals, Conductivity, Ions. Israel Program for Scientific Translations Jerusalem 1971. see also, 74.
    Israel, H. (1973). Atmospheric Electricity: Vol. II: Fields, Charges. Currents.
    Israelsson, S., & Tammet, H. (2001). Variation of fair weather atmospheric electricity at Marsta Observatory, Sweden, 1993–1998. Journal of atmospheric and solar-terrestrial physics, 63(16), 1693-1703.
    Jayaratne, E. R., & Verma, T. S. (2004). Environmental aerosols and their effect on the Earth’s local fair-weather electric field. Meteorology and atmospheric physics, 86(3), 275-280.
    Jianguo, H., Tianming, T., & Derui, L. (2000). Progress in the research on atmospheric electric field anomaly as an index for short-impending prediction of earthquakes. Journal of Earthquake Prediction Research, 8(3), 241-255.
    Jin, X., Bu, J., Tian, J., Wu, X., Qiu, G., Ma, L., ... & Zhang, L. (2021). The relationship between atmospheric potential gradient descent along with negative potential gradient anomalies and earthquake precursors. Arabian Journal of Geosciences, 14(14), 1-13.
    Johnston, M. J. S. (1997). Review of electric and magnetic fields accompanying seismic and volcanic activity. Surveys in geophysics, 18(5), 441-476.
    Kachakhidze, N., Kachakhidze, M., Kereselidze, Z., & Ramishvili, G. (2009). Specific variations of the atmospheric electric field potential gradient as a possible precursor of Caucasus earthquakes. Natural Hazards and Earth System Sciences, 9(4), 1221-1226.
    Kasemir, H. W. (1979, July). The atmospheric electric global circuit. In Proceedings of Workshop on the Need for Lightning Observations from Space, NASA CP-2095 (pp. 136-147).
    Kastelis, N., & Kourtidis, K. (2016). Characteristics of the atmospheric electric field and correlation with CO 2 at a rural site in southern Balkans. Earth, Planets and Space, 68(1), 1-15.
    Kellogg, P.J., M. Weed (1968) Balloon measurements of ionospheric E-fields Proceedings of Fourth International Conference on the Universal Aspects of Atmospheric Electricity, Tokyo.
    Kelvin, L. (1860). Electricity atmospheric. Nichols Cyclopedia.
    Kondo, G. The variation of the atmospheric electric field at the time of earthquake. Kakioka Magnet. Observ. Mem. 1968, 13, 11–23.
    Krehbiel, P. R. (1986), The Earth's electrical environment: 8. The electrical structure of thunderstorms, pp. 91, National Academies Press, Washington.
    Krehbiel, P. R., Riousset, J. A., Pasko, V. P., Thomas, R. J., Rison, W., Stanley, M. A., & Edens, H. E. (2008). Upward electrical discharges from thunderstorms. Nature Geoscience, 1(4), 233-237.
    Krehbiel, P., Riousset, J., Pasko, V., Thomas, R., Rison, W., Stanley, M., & Edens, H. (2008). Supplementary Information to ‘Upward Electrical Discharges from Thunderstorms’.
    Kubicki, M., Odzimek, A., & Neska, M. (2016). Relationship of ground-level aerosol concentration and atmospheric electric field at three observation sites in the Arctic, Antarctic and Europe. Atmospheric Research, 178, 329-346.
    Kudintseva, I. G., Nickolaenko, A. P., Rycroft, M. J., & Odzimek, A. (2016). AC and DC global electric circuit properties and the height profile of atmospheric conductivity. Annals of geophysics, 59(5), 0545.
    Kuo, C. L., Huba, J. D., Joyce, G., & Lee, L. C. (2011). Ionosphere plasma bubbles and density variations induced by pre‐earthquake rock currents and associated surface charges. Journal of Geophysical Research: Space Physics, 116(A10).
    Lidvansky, A. S. (2003). The effect of the electric field of the atmosphere on cosmic rays. Journal of Physics G: Nuclear and Particle Physics, 29(5), 925.
    Linke, F. (1904). Luftelektrische Messungen bei zwölf Ballonfahrten. Abhandlungen der Gesellschaft der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse, 3, 1-1.
    Liperovsky, V. A., Meister, C. V., Liperovskaya, E. V., & Bogdanov, V. V. (2008). On the generation of electric field and infrared radiation in aerosol clouds due to radon emanation in the atmosphere before earthquakes. Natural Hazards and Earth System Sciences, 8(5), 1199-1205.
    Liu, C., Williams, E. R., Zipser, E. J., & Burns, G. (2010). Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. Journal of the atmospheric sciences, 67(2), 309-323.
    Liu, J. Y., Chen, C. H., Chen, Y. I., Yang, W. H., Oyama, K. I., & Kuo, K. W. (2010). A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007. Journal of Asian Earth Sciences, 39(1-2), 76-80.
    Liu, J. Y., Chen, Y. I., Pulinets, S. A., Tsai, Y. B., & Chuo, Y. J. (2000). Seismo‐ionospheric signatures prior to M≥ 6.0 Taiwan earthquakes. Geophysical research letters, 27(19), 3113-3116.
    Livingston, J. M., & Krider, E. P. (1978). Electric fields produced by Florida thunderstorms. Journal of Geophysical Research: Oceans, 83(C1), 385-401.
    Lueder, H. (1943). Elektrische Registrierung von heranziehenden Gewittern und die Feinstruktur des luftelektrischen Gewitterfeldes. Verlag nicht ermittelbar.
    MacGorman, D. R., Rust, W. D., & Rust, W. D. (1998). The electrical nature of storms. Oxford University Press on Demand.
    Mach, D. M., Blakeslee, R. J., & Bateman, M. G. (2011). Global electric circuit implications of combined aircraft storm electric current measurements and satellite‐based diurnal lightning statistics. Journal of Geophysical Research: Atmospheres, 116(D5).
    Making, M., & Ogawa, T. (1984). Responses of atmospheric electric field and air-earth current to variations of conductivity profiles. Journal of atmospheric and terrestrial physics, 46(5), 431-445.
    Mapleson, W. W., & Whitlock, W. S. (1955). Apparatus for the accurate and continuous measurement of the earth's electric field. Journal of Atmospheric and Terrestrial Physics, 7, 61-72.
    Markson, R. (1983). Solar modulation of fair-weather and thunderstorm electrification and a proposed program to test an atmospheric electrical Sun-weather mechanism. Weather and climate responses to solar variations, 323.
    Markson, R. (2007). The global circuit intensity: Its measurement and variation over the last 50 years. Bulletin of the American Meteorological Society, 88(2), 223-242.
    Marshall, T. C., Stolzenburg, M., Krehbiel, P. R., Lund, N. R., & Maggio, C. R. (2009). Electrical evolution during the decay stage of New Mexico thunderstorms. Journal of Geophysical Research: Atmospheres, 114(D2).
    Mauchly, S. J. (1921). Note on the diurnal variation of the atmospheric electric potential gradient. Phys. Rev, 18(2), 161-162.
    Mauchly, S. J. (1923). On the diurnal variation of the potential gradient of atmospheric electricity. Terrestrial Magnetism and Atmospheric Electricity, 28(3), 61-81.
    Mezuman, K., Price, C., & Galanti, E. (2014). On the spatial and temporal distribution of global thunderstorm cells. Environmental Research Letters, 9(12), 124023.
    Moore, C. B., & Vonnegut, B. (1977). The thundercloud. Lightning: Physics of Lightning, Volume 1 & 2, 1, 51.
    Mozer, F. S., & Serlin, R. (1969). Magnetospheric electric field measurements with balloons. Journal of Geophysical Research, 74(19), 4739-4754.
    Nagaraja, K., Prasad, B. S. N., Srinivas, N., & Madhava, M. S. (2006). Electrical conductivity near the Earth's surface: Ion–aerosol model. Journal of atmospheric and solar-terrestrial physics, 68(7), 757-768.
    Odzimek, A., & Lester, M. (2009). Modelling the Earth’s global atmospheric electric circuit—Development, challenges and directions. Publs. Inst. Geophys. Pol. Acad. Sci.(eds) Baranski P and Kubicki M, D-73 (214).
    Odzimek, A., Lester, M., & Kubicki, M. (2010). EGATEC: A new high‐resolution engineering model of the global atmospheric electric circuit—Currents in the lower atmosphere. Journal of Geophysical Research: Atmospheres, 115(D18).
    Omori, Y., Nagahama, H., Kawada, Y., Yasuoka, Y., Ishikawa, T., Tokonami, S., & Shinogi, M. (2009). Preseismic alteration of atmospheric electrical conditions due to anomalous radon emanation. Physics and Chemistry of the Earth, Parts A/B/C, 34(6-7), 435-440.
    Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., & Taylor, P. (2007). Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics, 431(1-4), 211-220.
    Pasko, V. P. (2010). Recent advances in theory of transient luminous events. Journal of Geophysical Research: Space Physics, 115(A6).
    Pierce, E. T. (1976). Atmospheric electricity and earthquake prediction. Geophysical Research Letters, 3(3), 185-188.
    Pulinets, S., & Boyarchuk, K. (2004). Ionospheric precursors of earthquakes. Springer Science & Business Media.
    Pustovalov, K. N., & Nagorskiy, P. M. (2018). Response in the surface atmospheric electric field to the passage of isolated air mass cumulonimbus clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 172, 33-39.
    Rakov, V. A., & Uman, M. A. (2003). Lightning: physics and effects. Cambridge university press.
    Ramu, M. S., & Vohra, K. G. (1969). Investigations on radioactive equilibrium in the lower atmosphere between radon and its short‐lived decay products. Tellus, 21(3), 395-403.
    Roble, R. G., & Hays, P. B. (1979). A Quasi‐static model of global atmospheric electricity 2. Electrical coupling between the upper and lower atmosphere. Journal of Geophysical Research: Space Physics, 84(A12), 7247-7256.
    Rodger, C. J., Werner, S., Brundell, J. B., Lay, E. H., Thomson, N. R., Holzworth, R. H., & Dowden, R. L. (2006, December). Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study. In Annales Geophysicae (Vol. 24, No. 12, pp. 3197-3214). Copernicus GmbH.
    Rosen, J. M., Hofmann, D. J., Gringel, W., Berlinski, J., Michnowski, S., Morita, Y., ... & Olson, D. (1982). Results of an international workshop on atmospheric electrical measurements. Journal of Geophysical Research: Oceans, 87(C2), 1219-1224.
    Rycroft, M. J., Harrison, R. G., Nicoll, K. A., & Mareev, E. A. (2008). An overview of Earth’s global electric circuit and atmospheric conductivity. Planetary Atmospheric Electricity, 83-105.
    Rycroft, M. J., Israelsson, S., & Price, C. (2000). The global atmospheric electric circuit, solar activity and climate change. Journal of Atmospheric and Solar-Terrestrial Physics, 62(17-18), 1563-1576.
    Rycroft, M. J., Nicoll, K. A., Aplin, K. L., & Harrison, R. G. (2012). Recent advances in global electric circuit coupling between the space environment and the troposphere. Journal of Atmospheric and Solar-Terrestrial Physics, 90, 198-211.
    Rycroft, M. J., Odzimek, A., Arnold, N. F., Füllekrug, M., Kułak, A., & Neubert, T. (2007). New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites. Journal of Atmospheric and Solar-Terrestrial Physics, 69(17-18), 2485-2509.
    Sapkota, B. K., & Varshneya, N. C. (1990). On the global atmospheric electrical circuit. Journal of atmospheric and terrestrial physics, 52(1), 1-20.
    Secker, P. E. (1975). The desing of simple instruments for measurement of charge on insulating surfaces. Journal of electrostatics, 1(1), 27-36.
    Secker, P. E., & Chubb, J. N. (1984). Instrumentation for electrostatic measurements. Journal of electrostatics, 16(1), 1-19.
    Siingh, D., Singh, R. P., Gopalakrishnan, V., Selvaraj, C., & Panneerselvam, C. (2013). Fair-weather atmospheric electricity study at Maitri (Antarctica). Earth, Planets and Space, 65(12), 1541-1553.
    Silva, H. G., Bezzeghoud, M., Reis, A. H., Rosa, R. N., Tlemçani, M., Araújo, A. A., Serrano, C., Borges, J. F., Caldeira, B., & Biagi, P. F. (2011). Atmospheric electrical field decrease during the M= 4.1 Sousel earthquake (Portugal). Natural Hazards and Earth System Sciences, 11(3), 987-991.
    Silva, H. G., Conceição, R., Melgão, M., Nicoll, K., Mendes, P. B., Tlemçani, M., ... & Harrison, R. G. (2014). Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence. Environmental Research Letters, 9(11), 114025.
    Sun, Y. Y., Liu, J. Y., Lin, C. Y., Tsai, H. F., Chang, L. C., Chen, C. Y., & Chen, C. H. (2016). Ionospheric F2 region perturbed by the 25 April 2015 Nepal earthquake. Journal of Geophysical Research: Space Physics, 121(6), 5778-5784.
    Tant, P., Bolsens, B., Sels, T., Van Dommelen, D., Driesen, J., & Belmans, R. (2007). Design and application of a field mill as a high-voltage DC meter. IEEE Transactions on Instrumentation and Measurement, 56(4), 1459-1464.
    Thomas, J. N. (2005). Lightning-driven electric and magnetic fields measured in the stratosphere: Implications for sprites. University of Washington.
    Thomson, W. (1872). Reprint of papers on electrostatics and magnetism. Macmillan & Company.
    Tinsley, B. A., & Zhou, L. (2006). Initial results of a global circuit model with variable stratospheric and tropospheric aerosols. Journal of Geophysical Research: Atmospheres, 111(D16).
    Torreson, O. W. (1946). Ocean atmospheric-electric results. Oceanography III: Scientific results of Cruise VII during 1928-1929 under Command of Captain JP Ault.
    Tuma, J. (1899). Beiträge zur Kenntniss der atmosphärischen Elektricität III. Sitz. Ak. Wiss. Wien, 227-260.
    TURNS, B. F. (2006). Benjamin Franklin and lightning rods. Physics Today, 59(1), 42.
    Uyeda, S. (2013). On earthquake prediction in Japan. Proceedings of the Japan Academy, Series B, 89(9), 391-400.
    Wahlin, L. (1986). Atmospheric electrostatics.
    Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric science: an introductory survey (Vol. 92). Elsevier.
    Whipple, F. J. W. (1936). Point-discharge in the electric field of the Earth. Geophys. Mem. VII, 68, 1-20.
    Williams, E. R. (1989). The tripole structure of thunderstorms. Journal of Geophysical Research: Atmospheres, 94(D11), 13151-13167.
    Williams, E., Rothkin, K., Stevenson, D., & Boccippio, D. (2000). Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. Journal of Applied Meteorology, 39(12), 2223-2230.
    Wilson, C. T. R. (1906, November). On the measurement of the earth-air current and on the origin of atmospheric electricity. In Proc. Cambridge Philos. Soc (Vol. 13, No. 6, pp. 363-382).
    Wilson, C. T. R. (1921). III. Investigations on lighting discharges and on the electric field of thunderstorms. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221(582-593), 73-115.
    Wilson, C. T. R. (1924). The electric field of a thundercloud and some of its effects. Proceedings of the Physical Society of London (1874-1925), 37(1), 32D.
    Woith, H. (2015). Radon earthquake precursor: A short review. The European Physical Journal Special Topics, 224(4), 611-627.
    Xu, B., Huang, C., & Chen, B. (2013). Observation of the variations of the atmospheric electric field at YBJ, Tibet. Meteorology and Atmospheric Physics, 121(1), 99-107.
    Yaniv, R., Yair, Y., Price, C., Mkrtchyan, H., Lynn, B., & Reymers, A. (2017). Ground-based measurements of the vertical E-field in mountainous regions and the “Austausch” effect. Atmospheric Research, 189, 127-133.
    Yeh, E. C. (2018). The Variation of the Vertical Electric Field at Ground associated with Earthquakes and Severe Weather. In Master dissertation, National Cheng Kung University.
    Zhou, L., & Tinsley, B. A. (2010). Global circuit model with clouds. Journal of the atmospheric sciences, 67(4), 1143-1156.
    Ziegler, C. L., MacGorman, D. R., Dye, J. E., & Ray, P. S. (1991). A model evaluation of noninductive graupel‐ice charging in the early electrification of a mountain thunderstorm. Journal of Geophysical Research: Atmospheres, 96(D7), 12833-12855.
    Zou, Z., Cui, X., & Lu, T. (2015). Measurement method of charge densities at ground level under high‐voltage direct current conductor. IET Science, Measurement & Technology, 9(8), 973-978.

    下載圖示
    2026-01-11公開
    QR CODE