| 研究生: |
謝聰斌 Shie, Tsung-Bin |
|---|---|
| 論文名稱: |
鈦合金濕式滑動磨潤性質研究 The Wear Behavior of Titanium Alloys in Lubricant |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 磨耗,鈦合金,髖關節 |
| 外文關鍵詞: | titanium alloy, hip joint, wear |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體於長期的荷重及相對運動下,對髖關節的磨損會隨著年齡增加而日益嚴重,而當關節軟骨的磨損程度嚴重到會導致髖部疼痛,使得髖關節無法正常運作,此時就需要考慮進行人工髖關節的置換。
在人工髖關節組件應用上,對於需承受高應力之股骨位置,通常是使用有較高強度的金屬材料,而需要能吸收衝擊、減少相對位移的軟骨組織,則是以高分子予以取代。本研究主要目的是比Ti-Mo(І)、Ti-Mo(Ⅱ)及Ti-6Al-4V的磨耗性質作定性的研究與探討。在此將以金屬對金屬和金屬對高分子兩種磨秏機制為基礎,分別做濕式磨潤性質測試和定性的分析,進而探討鈦合金與不同對磨材之間的磨秏現象。
整個濕式磨耗測試的結果顯示,在金屬對金屬的實驗中,仍以Ti-6Al-4V的磨耗性質較佳,反之,在金屬對高分子的實驗中,Ti-Mo(І)與Ti-Mo(Ⅱ)兩合金的磨耗性質則比Ti-6Al-4V來的優異。因此在不同的磨耗機制中,其適合作為人工髖關節元件之材料也不盡相同。
The body is under the long-period loads and the relative actions, and the abrasion for hip joints will be more and more gross with increasing age. When the abrasion degree for joint cartilage is very serious to induce hip joints hurt and the hip joints can’t work normally, this is time to consider the replacement for artificial hip joints.
In the application of artificial hip joints, it is usually used for the higher strong metal material in the femoral position which needs to bear high stress, and it is replaced by polyelectrolyte in the cartilage position which needs to absorb impact and reduce relative displacement. The primary object for the study is the investigation of wear property between Ti-Mo(І), Ti-Mo(Ⅱ) and Ti-6Al-4V. In the base of metal to metal and metal to polyelectrolyte, we will investigate the wear phenomenon between the titanium alloys and different material in the tests of moist wear property.
The results of the whole moist wear tests report that the wear property is better for Ti-6Al-4V, in the other end, the wear property for Ti-Mo(І) and Ti-Mo(Ⅱ) is more excellent than that of Ti-6Al-4V. Therefore, the fitting material for hip joints is very different in the different wear mechanisms.
[1] Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20-24, 1974.
[2] Park JB, Lakes RS. Biomaterials-An introduction, 2nd edn. New York, London: Plenum Press, 1992.
[3] Black J. Biological performance of materials-fundamentals of biocompatibility, 2nd edn. New York: Marcel Dekker Inc., 1992.
[4] Freese H, Teledyne-Allvac, Monroe NC. Private communication, 1995.
[5] J.A. Davidson, A.K. Mishra, P. Kovacs and R.A. Poggie, “New surface hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty”, Bio-Medical Materials and Engineering, 4(3): 231-243, 1994.
[6] B.A. Mckellop and T.V. Röstlund, “The wear behavior of ion-implanted Ti-6Al-4V against UHMWPE”, Journal of Biomedical Materials Research, 24: 1413-1425, 1990.
[7] F. Torregrosa, L. Barrallier and L. Roux, “Phase analysis, microhardness and tribological behavior of Ti-6Al-4V after ion implantation of nitrogen in connection with its application for hip-joint prosthesis”, Thin Solid Films, 266: 245-253, 1995.
[8] F. Alonso, T.J. Ugarte, D. Sansom, J.L. Viviente and J.I. Onate, “Effects of ion implantation on Ti-6Al-4V on its frictional behavior against UHMWPE”, Surface and Coatings Technology, 83: 301-306, 1996.
[9] Steinemann SG. “Corrosion of surgical implants-in vivo and in vitro tests” In: Winter GD, Leray JL, de Groot K, editors. Evaluation of Biomaterials. New York: Wiley,1980:1.
[10] Steinemann SG. “Corrosion of titanium and titanium alloys for surgical implants.”Titanium’84 Science and Technology,vol.2.Munich,Deutsche Gesellschaft Fur Metallkunde EV 1985;2:1373-9
[11] Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, “Cytocompatibility of various metal and development of new titanium alloys for medical implants”, Materials Science and Engineering, A243: 250-256, 1998.
[12] Mitsuo Niinomi, Daisuke Kuroda, Kei-ichi Fukunaga, Masahiko Morinaga, Yoshihisa Kato, Toshiaki Yashiro, Akihiro Suzuki, “Corrosion wear fracture of new β type biomedical titanium alloys”, Materials Science and Engineering, A263: 193-199, 1999.
[13] Wang K, Gustavson L, Dumbleton J. “The characterization of Ti-12Mo-6Zr-2Fe.A new biocompatible titanium alloy developed for surgical implants”. In: Beta Titanum in the 1990s’. Warrendale: The Minerals, Metals & Materials Society, 1993:49-60.
[14] Wang K, Gustavson L, Dumbleton J. “Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe
,developed for surgical implants, medical application of titanium and its alloys”. In: S.A. Brown, J.M. Lemon(Eds.), ASTM STP 1272, 1996,pp. 76-87.
[15] Goldsmith AA., Dowson D., Isaac GH., Lancaster JG., “A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements.”, Proceedings of the Institution of Mechanical Engineers. Part H-Journal of Engineering in Medicine. (214)1:30-47,2000.
[16] M.K. Harman, S.A. Banks, W.A. Hodeg, “Wear analysis of a retrieved hip implant with a titanium nitride coating”, J. Arthroplasty 12(8)(1997)838-945.
[17] P.A. Dearnley, K.L. Dahm, H. Cimenoglu, “The corrosion-wear behaviour of thermally oxidized CP-Ti and Ti-6Al-4V”, Wear 256(2004)469-479.
[18] Hasan Guleryuz, Huseyin Cimenoglu, “ Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy”, Biomaterials 25(2004)3325-3333.
[19] J.B. Park, “Biomaterials science and engineering”, Introduction, Chap.1, Plenum press, pp. 4, 1984.
[20] J. Livermore, “Effect of femoral head size on wear of the polyethylene acetabular component”, The Journal of Bone and Joint Surgery, vol. 72-A, No. 4, April, 1990.
[21] Richardson PD ,Oxygenator testing and evaluation : clinical concerns , In WN Zapol , J Q vist(eds),Artificial Lungs for Acute Respiratory Failure. Theory and practice. New York, Academic Pres,87-102,1976
[22] Dowson D. Friction and wear of medical implants and prosthetic devices. ASM Handbook, vol. 18. Gereland: Materials Park, OH: ASM International, 1992:656-64.
[23] Park JB, Lakes RS. Biomaterials-An introduction, 2nd edn. New York, London: Plenum Press, 1992
[24] J.L. Tipper, P.J. Firkins, A.A. Besong, P.S.M. Barbour, J. Nevelos, M.H. Stone, E. Ingham, J. Fisher “Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator” Wear 250 (2001) 120-128
[25] J.L. Hailey, E. Ingham, M.H. Stone, B.M. Wroblewski, J. Fisher, Proc. Inst. Mech. Eng. H 210 (1996) 3–10.
[26] J.L. Tipper, E. Ingham, J.L. Hailey, A.A. Besong, B.M. Wroblewski, M.H. Stone, J. Fisher, J. Mater. Sci., Mats Med. 11 (2000) 117–124
[27] S.S. Seymour, “Plastics materials and processes”, Van Nostrand Reinhold, New York, pp. 74-77, 1982.
[28] S.R. Simon, “Orthopaedic basic science”, American Academy of
Orthopaedic Surgeons, pp. 474, 1994
[29] S.L. Evans and P.J. Gregson, “Composite technology in load-bearing orthopaedic implants”, Biomaterials, 19: 1329-1342, 1998.
[30] M. Rψkkum, M. Brandt, K. Bye, K.R. Hetland, S. Waage and A. Reigstad, “Polyethylene wear, osteolysis and acetabular loosening with an HA-coated hip prosthesis”, The Journal of Bone and Joint Surgery, 81B: 582-589, 1999.
[31] D.P. Dowling, P.V. Kola and K. Donnelly, “Evaluation of diamond-like carbon-coated orthopaedic implants”, 6: 390-393, 1997.
[32] M.T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating”, Biomaterials, 21: 907-913, 2000.
[33] J. Matthew and Jr. Donachie, “Titanium a technical guide”, ASM International, Metals Park, OH 44073, USA, 1988.
[34] Ankem S and Greene SA. “Recent developments in microstructure/property relationships of beta titanium alloys ”.Mater Sci Engng A 1999;263:127-31.
[35] Jha SK and Ravichandran KS.“High-cycle fatigue resistance in beta-titanium alloys”. JOM 2000;52(3):30-5.
[36] Schutz RW. “Environmental behavior of beta titanium alloys”. JOM 1994;46(7):24-9.
[37] J.L. Murray, “Binary alloy phase diagrams”, Vol. 3, edited by massalski TB, J.L. Murray, L.H. Bennett and H. Baker, American Society for Metals, Park, Ohio: ASM, pp. 1637-1641, 1986.
[38] P.J. Bania, “Beta titanium alloys and their role in the titanium industry”, edited by D. Eylon, R. Boyer and D. Koss, Beta Titanium Alloys in the 1990’s, TMS, Warrendale, PA, pp. 3-14
[39] Oka M and Taniguchi Y.“Crystallography of stress-induced products in metastable beta Ti-Mo alloys”. Titanium’80 :Science and Technology(Proc. Fourth Int. Conf. On Titanium, Kyoto, Japan), The Metallurgical Society of AIME, 1980.
[40] Oka M and Taniguchi Y. “Stress-induced products in meta-stable beta Ti-Mo and Ti-V alloys”. JJpn Inst Met 1978;42(8):814-20.
[41] W.F. Ho, “Structure and properties of cast Ti-Mo alloys”, Dissertation for Philosophy, Department of Materials Science and Engineering National Cheng-Kung University, Tainan, Taiwan, R.O.C., 1999.
[42] 傅宇輝“骨科原理及應用” 國立編譯館,第一版,第二十七章,1989.
[43] J.B. Park, “Biomaterials science and engineering”, Introduction ,Chap.1, Plenum press, pp. 1, 1984.
[44] M. M. Black, R. Noort and P. J. Drury, “Medical application of biomaterials”, Phys. Technol., 13, p.50-65, 1982.
[45] H. Klinkmann, H. W. Schmitt,“Haemodialysis and membrance biocompatibility”, Contr. Nephrol., 37, p.70-77, 1984.
[46] R.M. Hall and A. Unsworth, “Review-Friction in hip prostheses”, Biomaterials, 18: 1017-1026, 1997.
[47] R.J.A. Bigsby, D.D. Auger, Z.M. Jin, D. Dowson, C.S. Hardaker and J. Fisher, “A comparative tribological study of wear of composite cushion cups in a physiological hip joint simulator”, Journal of Biomechanics, 31: 363-369, 1998.ˇ
[48] S.J. Hall, “Basic Biomechanics”, The McGraw-Hill Companies, Inc., Chap. 4, 1995.
[49] W.H. Harris, “Osteolysis and particle disease in hip replacement-A review”, Acta orthopaedica Scandinavica, 65: 113-123, 1994.
[50] S. Santavirta, “Biocompatibility of polyethylene and host response to loosening of cementless total hip replacement”, Clinical Orthopaedics and Related research, 297: 100-110, 1993.
[51] H.A. McKellop, P. Campbell and S.H. Park, “The origin of submicron polyethylene wear debris in total hip arthroplasty”, Clinical Orthopaedics and Related Research, 311: 3-20, 1995.
[52] H.G. Willert and H. Bertram, “Osteolysis in alloarthroplasty of the hip-The role of ultra-high molecular weight polyethylene wear particles”, Clinical Orthopaedics and Related Research, No. 258, Sep, 1990.
[53] M.T. Manley and P. Serekian, “Wear debris-An environmental issue in total joint replacement”, Clinical Orthopaedics and Related Research, 298: 137-146, 1994.
[54] M.J. Griffith, M.K. Seidenstein, D. Williams and J. Charnley, “Eight year results of Charnley arthroplasties of the hip with special reference to the behavior of cement”, Clinical Orthopaedics and Related Research, 137: 24-36, 1978.
[55] J.K. Weaver, “Activity expectations and limitations following total joint replacement”, Clinical Orthopaedics and Related Research, 137: 55-61, 1978.
[56] Ingham E., Fisher J.“Biological reactions to wear debris in total joint replacement.”, Proceedings of the Institution of Mechanical Engoneers. Part H – Journal of Engineering in Medicine. 214(1):21-37,2000
[57] Wear 250 (2001) 120–128 , ”Characterisation of wear debris from UHMWPE on zirconia ceramic,metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator” J.L. Tipper a*, P.J. Firkins b , A.A. Besong b , P.S.M. Barbour M.H. Stone c , E. Ingham a , J. Fisher b“
[58] C.H. Lohmann and Z. Schwartz, ”Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition”, 21: 551-561, 2000.
[59] S.R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp.466-467, 1994.
[60] D.A. Rigney and J.P. Hirth, “ Plastic deformation and sliding friction of metals”, Wear, Vol.53,1979,pp.345-370.
[61] 陳漢民, ”低能量摩擦材料製程及磨潤性質研究”,1997
[62] Andrew W. Batchelor and Gwidon W. Stachowiak, “Tribology in metals processing”. Journal of Materials Processing Technology 48 (1995) 503-515.
[63] M.A. Wimmer, J.LOOS, R.Nassutt, M.Heitkemper, A.Fischer, “The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results”. Wear 250 (2001)129-139.
[64] K.H. Zum, Gahr, Microstructure and Wear of Materials, Elservier, Arusterdam, pp.80-168, 1987
[65] A.J. Kinloch, “The science of adhesion”, J. Mater.Sci, 15, pp2141-2166, 1980
[66] B.V. Derjaguin, “Investigation on the adhesion of polymer particles to the surface of a semiconductors ”, J. Adhesion. pp.65-71, 1972
[67] H. Krupp, “Recent result in particle adhesion, UHV measurements, light modulated adhesion and the effect of adsorbates”, J. Adhesion, pp.83-86, 1972
[68] G.W. Stachowiak and A.W. Batchelor, Engineering tribology, Elsevier, Amsterdam, 1993.
[69] J.E. Nevelos, E. Ingham, C. Doyle, J. Fisher and A.B. Nevelos, “Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses”, Biomaterials, 20: 1833-1840, 1999.
[70] S.R. Simon, “Orthopedics basic science”, American Academy of Orthopedic Surgeons, pp. 464-466, 1994.
[71] A. Wang, A. Essner, C. Stark and J.H. Dumbleton, “Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions”, Biomaterials, Vol. 17, No. 9, 1996.
[72] V.D. Good, I.C. Clarke and L. Anissian, “Water and bovine serum lubrication compared in simulator PTFE/CoCr wear model”, Journal of Biomedical Materials Research, 33: 275-283, 1996.
[73] J.P. Van Loon, G.J. Verkerke, L.G. M. de Bont and R.S.B. Liem, “Wear-testing of a temporomandibular joint prosthesis: UHMWPE and PTFE against a metal ball, in water and in serum”, Biomaterials, 20: 1471-1478, 1999.
[74] V. Chanddrasekaran, W.L. Sauer, A.M. Tayor and D.W. Hoeppner, “Evaluation of fretting corrosion behavior of the proximal pad taper of a modular hip design”, Wear, 231: 54-64, 1999.
[75] M.J. Paooas, G. Makris and F.F. Buechel, “Titanium nitride ceramic film against polyethylene”, Clinical Orthopaedics and Related Research, 317: 64-70, 1995.
[76] V.O. Saikko, P.O. Paavolainen and P. Slatis, “Wear of the polyethylene acetabular cup-Metallic and ceramic heads compared in a hip simulator”, Acta Orthopaedica Scandinavica, 64: 391-402, 1993.
[77] Quinn TFJ. Brit J Appl Phys 1962; 13:33.
[78] Quinn TFJ. ASLE Trans 1967; 10:158.
[79] Aronov V. Wear 1976; 38:305.
[80] Molgaard J, Srivastava VK. Wear 1977; 41:263.
[81] Tribology International 35 (2002) 725–729 , “The role of atmospheres and lubricants in the oxidational wear of metals”. Hyun-Soo Hong
[82] Quinn TFJ. Wear 1971; 18:413.
[83] Hong H, Winer WO. J Trib 1989; 111:504.
[84] Hauffe K. Oxidation of metals. Unknown: Plenum Press;, 1965.