簡易檢索 / 詳目顯示

研究生: 何詠淨
Ho, Yung-Ching
論文名稱: 探討IRSp53異構物-IRSp53T在大腸直腸癌中的角色
Investigating the role of insulin receptor substrate of 53-kDa isoform T in colorectal cancer
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 117
中文關鍵詞: 大腸直腸癌 IRSp53T SW480轉移IGF-1
外文關鍵詞: Colorectal cancer, IRSp53T, SW480, metastasis, IGF-1
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據臺灣國民健康署統計資料顯示,轉移性大腸直腸癌已多年蟬聯十大死因前三。我們目標蛋白IRSp53已知可調控細胞骨架重組進而促進偽足的形成。透過資料庫的分析,我們觀察到了高表達異構物IRSp53-T於大腸直腸癌與低存活率相關。進一步使用西方點墨法(Western blot)分析,晚期的大腸直腸癌擁有較多的IRSp53-T表達量比之早期。因而我們推測IRSp53-T可能涉及大腸直腸癌惡化的過程。本篇論文旨在探究IRSp53-T 於癌細胞中的轉移潛能,研究方法為透過建立穩定過表達IRSp53-T於大腸直腸癌細胞株SW480,該穩定過表達細胞株後續以53T代稱。細胞遷移以及侵襲試驗中,IRSp53-T展現了顯著的促進效應。而在轉移以及皮下小鼠模式中,我們於53T的組別中觀察到了巨噬細胞浸潤的團簇,然而其他異構物IRSp53-M和IRSp53-S並無類似的現象。西方點墨法中,IRSp53-T被觀察到促進了AKT的活化,而活化的現象推測與KRAS表現無關。確立轉移關係後,我們透過蛋白交互作用資料庫STRING以及現有文獻資料以釐清IRSp53-T與轉移相關的背後機制,最終選定IGF-1用於探測。相較於控制組別,53T細胞於IGF-1處置下展現持續性活化的AKT。鑒於AKT的活化位置在細胞膜周邊,我們使用免疫螢光染色偵測IGF-1處置後IRSp53-T在細胞中的分布位置。免疫螢光結果顯示IRSp53-T暴露於IGF-1下傾向於細胞膜周邊聚集。綜上所述,此研究結果顯示IRSp53-T具有促進大腸直腸癌轉移的潛力,並且我們推測IRSp53-T可能參與在IGF-1/AKT的路徑當中。

    Metastatic colorectal cancer (mCRC) contributes a high mortality rate in Taiwan. IRSp53 has been known to regulate actin cytoskeleton organization and promote pseudopodia/lamellipodia formation. Through online database search, we observed that high expression of IRSp53-T was associated with poor survival in CRC. Western blot analysis also revealed higher levels of IRSp53-T in late stage than in early stage. These results suggested IRSp53-T may be involved in CRC progression. To characterize metastatic potential of IRSp53-T in vitro and in vivo, we generated a cell line constitutively expressing IRSp53-T in SW480 cells (abbreviated as 53T). Both transwell assay and invasion assay showed that IRSp53-T increased cell motility and invasion. In intraperitoneal metastatic and subcutaneous mouse model, we observed macrophage-infiltrating tumor nests in 53T, while recruitment of macrophages was not found in M and S isoforms. Western blotting analysis illustrated that IRSp53-T increased activation of AKT, which was independent of of KRAS levels. We used STRING database to acquire the potential pathway connecting IRSp53-T and metastasis and proposed the evidence-supported growth factor, IGF-1, as a candidate target. The results of western blot displayed constitutive activation of AKT in 53T cells compared with the control groups under IGF-1 treatment. Given AKT is activated in cell membrane, we further evaluated membrane distribution of IRSp53-T by immunofluorescent staining, which showed the clustering of IRSp53-T at cell membrane when exposed to IGF-1. Collectively, our results demonstrated the metastatic potential of IRSp53-T in CRC and possible involvement of IGF-1/AKT pathway.

    Abstract in English i Abstract in Chinese ii Acknowledgment iii Abbreviations vi 1. Introduction 1 1.1. Colorectal cancer 1 1.1.1. Conventional therapies 1 1.1.2. Novel strategies for CRC treatment 2 1.1.2.1. Target therapy 3 1.1.2.2. Immunotherapy 4 1.2. Metastasis 6 1.2.1. Micrometastasis and tumor-associated macrophage 6 1.2.2. Exosomes 7 1.2.3. Cancer dormancy 9 1.2.4. IGF-1 in metastasis 10 1.3. IRSP53 11 1.3.1. I-BAR domain 12 1.3.2. CRIB domain & SH3 domain 12 1.3.3. Non-cancer diseases related to IRSp53 13 1.3.4. Association between cancers and IRSp53 14 1.4. Special aims 15 2. Methods and Materials 17 2.1. Antibodies and reagent 17 2.2. Cell culture 19 2.3. Database analysis 20 2.4. Plasmid transfection, lentivirus infection and stable clone selection 21 2.5. Cell lysate preparation 21 2.6. Western blot 22 2.7. Wound healing assay 23 2.8. Cell invasion assay 23 2.9. Immunofluorescence staining analysis 24 2.10. Boyden chamber assay 25 2.11. Cell viability assay 25 2.12. Soft agar colony formation assay 26 2.13. In vivo xenograft mice model 27 2.14. Histological staining 28 2.15. IGF-1 stimulation 29 2.16. Statistical analysis 29 3. Result 30 3.1. IRSp53-T is expressed in CRC cell lines and is positively associated with a poor prognosis. 30 3.2. Overexpression of IRSp53-T has no significant effect on cell proliferation both in vivo and in vitro. 31 3.3. IRSp53-T promotes cell motility and invasion in SW480 cells both in vivo and in vitro. 33 3.4. IRSp53-T exhibits a positive correlation with IGF-1/AKT signaling axis. 35 3.5. IRSp53-T is recruited to cell membrane and mediates actin organization under IGF-1 stimulation. 36 4. Discussion 38 4.1. Metastatic potential of IRSp53-T 38 4.1.1. Motility 38 4.1.2. Recruitment of macrophages 40 4.1.3. Organotropism metastasis 40 4.2. IGF-1 mediates membrane localization of IRSp53-T, and promotes metastasis in 53T cells. 42 4.3. The limitations of this study and directions for future research. 43 4.3.1. Limitations 43 4.3.2. Directions for future research 44 References 46 Tables 65 Figures 69 Appendix 97

    1 World Health Organization. Cancer. The problem, vol. 2021. World Health Organization: France, 2021.
    2 Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66: 683-691.
    3 Health Promotion Administration. Research & Statistic. Taiwan Cancer Registry, vol. 2020. Health Promotion Administration. Taipei, 2020.
    4 Tio TL. The TNM staging system. Gastrointest Endosc 1996; 43: S19-24.
    5 Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK et al. NCCN Guidelines Insights: Colon Cancer, Version 2.2018. J Natl Compr Canc Netw 2018; 16: 359-369.
    6 Beijers AJ, Mols F, Vreugdenhil G. A systematic review on chronic oxaliplatin-induced peripheral neuropathy and the relation with oxaliplatin administration. Support Care Cancer 2014; 22: 1999-2007.
    7 Kawczyk-Krupka A, Bugaj AM, Latos W, Zaremba K, Wawrzyniec K, Sieroń A. Photodynamic therapy in colorectal cancer treatment: the state of the art in clinical trials. Photodiagnosis Photodyn Ther 2015; 12: 545-553.
    8 Price TJ, Peeters M, Kim TW, Li J, Cascinu S, Ruff P et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol 2014; 15: 569-579.
    9 Diaz LA, Jr., Williams RT, Wu J, Kinde I, Hecht JR, Berlin J et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012; 486: 537-540.
    10 Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012; 486: 532-536.
    11 Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 2015; 21: 795-801.
    12 Hecht JR, Douillard JY, Schwartzberg L, Grothey A, Kopetz S, Rong A et al. Extended RAS analysis for anti-epidermal growth factor therapy in patients with metastatic colorectal cancer. Cancer Treat Rev 2015; 41: 653-659.
    13 Jones RP, Sutton PA, Evans JP, Clifford R, McAvoy A, Lewis J et al. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. British Journal of Cancer 2017; 116: 923-929.
    14 Chabon JJ, Simmons AD, Lovejoy AF, Esfahani MS, Newman AM, Haringsma HJ et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 2016; 7: 11815.
    15 Becker MA, Farzan T, Harrington SC, Krempski JW, Weroha SJ, Hou X et al. Dual HER/VEGF receptor targeting inhibits in vivo ovarian cancer tumor growth. Mol Cancer Ther 2013; 12: 2909-2916.
    16 Wagner AD, Arnold D, Grothey AA, Haerting J, Unverzagt S. Anti-angiogenic therapies for metastatic colorectal cancer. Cochrane Database Syst Rev 2009: Cd005392.
    17 Tuomisto AE, Mäkinen MJ, Väyrynen JP. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J Gastroenterol 2019; 25: 4383-4404.
    18 Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol 2018; 36: 773-779.
    19 Kajihara M, Takakura K, Kanai T, Ito Z, Saito K, Takami S et al. Dendritic cell-based cancer immunotherapy for colorectal cancer. World J Gastroenterol 2016; 22: 4275-4286.
    20 Bever KM, Thomas DL, 2nd, Zhang J, Diaz Rivera EA, Rosner GL, Zhu Q et al. A feasibility study of combined epigenetic and vaccine therapy in advanced colorectal cancer with pharmacodynamic endpoint. Clin Epigenetics 2021; 13: 25.
    21 DeMaria PJ, Bilusic M, Park DM, Heery CR, Donahue RN, Madan RA et al. Randomized, Double-Blind, Placebo-Controlled Phase II Study of Yeast-Brachyury Vaccine (GI-6301) in Combination with Standard-of-Care Radiotherapy in Locally Advanced, Unresectable Chordoma. Oncologist 2021; 26: e847-e858.
    22 Morse MA, Hochster H, Benson A. Perspectives on Treatment of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitor Therapy. Oncologist 2020; 25: 33-45.
    23 Helling TS, Martin M. Cause of death from liver metastases in colorectal cancer. Ann Surg Oncol 2014; 21: 501-506.
    24 Farino CJ, Pradhan S, Slater JH. The Influence of Matrix-Induced Dormancy on Metastatic Breast Cancer Chemoresistance. ACS Appl Bio Mater 2020; 3: 5832-5844.
    25 Jing X, Yang F, Shao C, Wei K, Xie M, Shen H et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18: 157.
    26 Arends J. Struggling with nutrition in patients with advanced cancer: nutrition and nourishment-focusing on metabolism and supportive care. Ann Oncol 2018; 29: ii27-ii34.
    27 Ryser MD, Min BH, Siegmund KD, Shibata D. Spatial mutation patterns as markers of early colorectal tumor cell mobility. Proc Natl Acad Sci U S A 2018; 115: 5774-5779.
    28 Tohme S, Simmons RL, Tsung A. Surgery for Cancer: A Trigger for Metastases. Cancer Res 2017; 77: 1548-1552.
    29 Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest 2019; 129: 2964-2979.
    30 Dabbs DJ, Fung M, Landsittel D, McManus K, Johnson R. Sentinel lymph node micrometastasis as a predictor of axillary tumor burden. Breast J 2004; 10: 101-105.
    31 Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149-153.
    32 Ascha M, Ascha MS, Tanenbaum J, Bordeaux JS. Risk Factors for Melanoma in Renal Transplant Recipients. JAMA Dermatol 2017; 153: 1130-1136.
    33 Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 1999; 190: 617-627.
    34 Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 2019; 26: 78.
    35 Vérollet C, Charrière GM, Labrousse A, Cougoule C, Le Cabec V, Maridonneau-Parini I. Extracellular proteolysis in macrophage migration: losing grip for a breakthrough. Eur J Immunol 2011; 41: 2805-2813.
    36 El-Badrawy MK, Yousef AM, Shaalan D, Elsamanoudy AZ. Matrix metalloproteinase-9 expression in lung cancer patients and its relation to serum mmp-9 activity, pathologic type, and prognosis. J Bronchology Interv Pulmonol 2014; 21: 327-334.
    37 Katayama A, Bandoh N, Kishibe K, Takahara M, Ogino T, Nonaka S et al. Expressions of matrix metalloproteinases in early-stage oral squamous cell carcinoma as predictive indicators for tumor metastases and prognosis. Clin Cancer Res 2004; 10: 634-640.
    38 Wang W, Li D, Xiang L, Lv M, Tao L, Ni T et al. TIMP-2 inhibits metastasis and predicts prognosis of colorectal cancer via regulating MMP-9. Cell Adh Migr 2019; 13: 273-284.
    39 Imjeti NS, Menck K, Egea-Jimenez AL, Lecointre C, Lembo F, Bouguenina H et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proceedings of the National Academy of Sciences 2017; 114: 12495.
    40 Yang Y, Xu M, Huang H, Jiang X, Gong K, Liu Y et al. Serum carcinoembryonic antigen elevation in benign lung diseases. Scientific Reports 2021; 11: 19044.
    41 Hon KW, Abu N, Ab Mutalib NS, Jamal R. Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review. Front Pharmacol 2017; 8: 583.
    42 Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527: 329-335.
    43 Bruschini S, Ciliberto G, Mancini R. The emerging role of cancer cell plasticity and cell-cycle quiescence in immune escape. Cell Death & Disease 2020; 11: 471.
    44 De Angelis ML, Francescangeli F, La Torre F, Zeuner A. Stem Cell Plasticity and Dormancy in the Development of Cancer Therapy Resistance. Front Oncol 2019; 9: 626.
    45 Rajbhandari N, Lin WC, Wehde BL, Triplett AA, Wagner KU. Autocrine IGF1 Signaling Mediates Pancreatic Tumor Cell Dormancy in the Absence of Oncogenic Drivers. Cell Rep 2017; 18: 2243-2255.
    46 Ajani JA, Xu Y, Huo L, Wang R, Li Y, Wang Y et al. YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition. Gut 2021; 70: 55-66.
    47 Fang Z, Li T, Chen W, Wu D, Qin Y, Liu M et al. Gab2 promotes cancer stem cell like properties and metastatic growth of ovarian cancer via downregulation of miR-200c. Exp Cell Res 2019; 382: 111462.
    48 Murphy N, Carreras-Torres R, Song M, Chan AT, Martin RM, Papadimitriou N et al. Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses. Gastroenterology 2020; 158: 1300-1312.e1320.
    49 Li Y, Lu K, Zhao B, Zeng X, Xu S, Ma X et al. Depletion of insulin-like growth factor 1 receptor increases radiosensitivity in colorectal cancer. J Gastrointest Oncol 2020; 11: 1135-1145.
    50 Qiao C, Huang W, Chen J, Feng W, Zhang T, Wang Y et al. IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastasis through upregulating ACLY and IGF1R. Cell Death & Disease 2021; 12: 564.
    51 Li ZJ, Ying XJ, Chen HL, Ye PJ, Chen ZL, Li G et al. Insulin-like growth factor-1 induces lymphangiogenesis and facilitates lymphatic metastasis in colorectal cancer. World J Gastroenterol 2013; 19: 7788-7794.
    52 Ge J, Chen Z, Wu S, Chen J, Li X, Li J et al. Expression levels of insulin-like growth factor-1 and multidrug resistance-associated protein-1 indicate poor prognosis in patients with gastric cancer. Digestion 2009; 80: 148-158.
    53 Shen K, Cui D, Sun L, Lu Y, Han M, Liu J. Inhibition of IGF-IR increases chemosensitivity in human colorectal cancer cells through MRP-2 promoter suppression. J Cell Biochem 2012; 113: 2086-2097.
    54 Wang F, Bank T, Malnassy G, Arteaga M, Shang N, Dalheim A et al. Inhibition of insulin-like growth factor 1 receptor enhances the efficacy of sorafenib in inhibiting hepatocellular carcinoma cell growth and survival. Hepatol Commun 2018; 2: 732-746.
    55 Vigneri PG, Tirrò E, Pennisi MS, Massimino M, Stella S, Romano C et al. The Insulin/IGF System in Colorectal Cancer Development and Resistance to Therapy. Front Oncol 2015; 5: 230.
    56 Riedemann J, Macaulay VM. IGF1R signalling and its inhibition. Endocr Relat Cancer 2006; 13 Suppl 1: S33-43.
    57 Larsson O, Girnita A, Girnita L. Role of insulin-like growth factor 1 receptor signalling in cancer. British Journal of Cancer 2005; 92: 2097-2101.
    58 Fassnacht M, Berruti A, Baudin E, Demeure MJ, Gilbert J, Haak H et al. Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomised, phase 3 study. Lancet Oncol 2015; 16: 426-435.
    59 Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM et al. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. Embo j 2005; 24: 240-250.
    60 Miyahara A, Okamura-Oho Y, Miyashita T, Hoshika A, Yamada M. Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53-kDa protein. J Hum Genet 2003; 48: 410-414.
    61 Okamura-Oho Y, Miyashita T, Yamada M. Distinctive tissue distribution and phosphorylation of IRSp53 isoforms. Biochem Biophys Res Commun 2001; 289: 957-960.
    62 Inamdar K, Tsai F-C, de Poret A, Dibsy R, Manzi J, Merida P et al. Full assembly of HIV-1 particles requires assistance of the membrane curvature factor IRSp53. bioRxiv 2021: 2021.2002.2010.430663.
    63 Sathe M, Muthukrishnan G, Rae J, Disanza A, Thattai M, Scita G et al. Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat Commun 2018; 9: 1835.
    64 Mellman I, Yarden Y. Endocytosis and cancer. Cold Spring Harb Perspect Biol 2013; 5: a016949.
    65 Khan I, Steeg PS. Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer 2021; 124: 66-75.
    66 Kast DJ, Yang C, Disanza A, Boczkowska M, Madasu Y, Scita G et al. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat Struct Mol Biol 2014; 21: 413-422.
    67 Klemke RL. Trespassing cancer cells: 'fingerprinting' invasive protrusions reveals metastatic culprits. Curr Opin Cell Biol 2012; 24: 662-669.
    68 Kast DJ, Dominguez R. IRSp53 coordinates AMPK and 14-3-3 signaling to regulate filopodia dynamics and directed cell migration. Mol Biol Cell 2019; 30: 1285-1297.
    69 Jacquemet G, Hamidi H, Ivaska J. Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol 2015; 36: 23-31.
    70 Kim Y, Noh YW, Kim K, Yang E, Kim H, Kim E. IRSp53 Deletion in Glutamatergic and GABAergic Neurons and in Male and Female Mice Leads to Distinct Electrophysiological and Behavioral Phenotypes. Front Cell Neurosci 2020; 14: 23.
    71 Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179-184.
    72 Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 2011; 70: 886-897.
    73 Liu L, Sun L, Li ZH, Li HM, Wei LP, Wang YF et al. BAIAP2 exhibits association to childhood ADHD especially predominantly inattentive subtype in Chinese Han subjects. Behav Brain Funct 2013; 9: 48.
    74 de Mello NP, Orellana AM, Mazucanti CH, de Morais Lima G, Scavone C, Kawamoto EM. Insulin and Autophagy in Neurodegeneration. Front Neurosci 2019; 13: 491.
    75 Mohammadi A, Mehdizadeh AR. Deep Brain Stimulation and Gene Expression Alterations in Parkinson's Disease. J Biomed Phys Eng 2016; 6: 47-50.
    76 Ferguson SM, De Camilli P. Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 2012; 13: 75-88.
    77 Liu PS, Jong TH, Maa MC, Leu TH. The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene 2010; 29: 3977-3989.
    78 Capdevielle C, Desplat A, Charpentier J, Sagliocco F, Thiebaud P, Thézé N et al. HDAC inhibition induces expression of scaffolding proteins critical for tumor progression in pediatric glioma: focus on EBP50 and IRSp53. Neuro Oncol 2020; 22: 550-562.
    79 Li IH. Studying the role of IRSp53 in cell proliferation and motility in colorectal cancer cells. Master thesis, National Cheng Kung University, Tainan, 2014.
    80 Hu HT, Sasakura N, Matsubara D, Furusawa N, Mukai M, Kitamura N et al. Involvement of I-BAR protein IRSp53 in tumor cell growth via extracellular microvesicle secretion. bioRxiv 2020: 2020.2004.2020.050492.
    81 LIU Rong QY. Expression of IRSp53 in Epithelial Ovarian Carcinoma and Its Prognostic Significance. Cancer Research on Prevention and Treatment 2017; 44: 272-275.
    82 Solís-Fernández G, Montero-Calle A, Martínez-Useros J, López-Janeiro Á, de Los Ríos V, Sanz R et al. Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis. Cells 2022; 11.
    83 Giubellino A, Arany PR. Grb2 and Other Adaptor Proteins in Tumor Metastasis. In: Wu W-S, Hu C-T (eds). Signal Transduction in Cancer Metastasis. Springer Netherlands: Dordrecht, 2010, pp 77-102.
    84 Kao CY. Study the role of IRSp58M in colorectal cancer. Master thesis, National Cheng Kung University, Tainan, 2020.
    85 Wang YH. Establishing IRSp53S-inducible SW480 colorectal cancer cell lines and studying how IRSp53S affects cell proliferation in colon cancer cells. Master thesis, National Cheng Kung University, Tainan, 2019.
    86 Peng YR. Study the role of IRSp53 isoforms in colorectal cancer. Master thesis, National Cheng Kung University, Tainan, 2016.
    87 Bisi S, Marchesi S, Rizvi A, Carra D, Beznoussenko GV, Ferrara I et al. IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nat Commun 2020; 11: 3516.
    88 Chen P-C. Investigating the role of IRSp53 isoforms M and S in dasatinib-treated CRC. Master thesis, National Cheng Kung University, Tainan, 2021.
    89 Ehrig K, Kilinc MO, Chen NG, Stritzker J, Buckel L, Zhang Q et al. Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med 2013; 11: 79.
    90 Elekonawo FMK, Bos DL, Goldenberg DM, Boerman OC, Rijpkema M. Carcinoembryonic antigen-targeted photodynamic therapy in colorectal cancer models. EJNMMI Res 2019; 9: 108.
    91 Xie L, Wang Q, Nan F, Ge L, Dang Y, Sun X et al. OSacc: Gene Expression-Based Survival Analysis Web Tool For Adrenocortical Carcinoma. Cancer Manag Res 2019; 11: 9145-9152.
    92 Sun W, Duan T, Ye P, Chen K, Zhang G, Lai M et al. TSVdb: a web-tool for TCGA splicing variants analysis. BMC Genomics 2018; 19: 405.
    93 Yang IS, Son H, Kim S, Kim S. ISOexpresso: a web-based platform for isoform-level expression analysis in human cancer. BMC Genomics 2016; 17: 631.
    94 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47: D607-d613.
    95 Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671-675.
    96 Council of Agriculture EY, R.O.C.(Taiwan),. Guideline for the Care and Use of Laboratory Animals. In: Council of Agriculture EY (ed). Council of Agriculture, Executive Yuan: Taiwan, 2018.
    97 National Research Council Committee for the Update of the Guide for the C, Use of Laboratory A. The National Academies Collection: Reports funded by National Institutes of Health. Guide for the Care and Use of Laboratory Animals. National Academies Press (US) Copyright © 2011, National Academy of Sciences.: Washington (DC), 2011.
    98 Gan SU, Fu Z, Sia KC, Kon OL, Calne R, Lee KO. Development of a liver-specific Tet-off AAV8 vector for improved safety of insulin gene therapy for diabetes. J Gene Med 2019; 21: e3067.
    99 Das AT, Tenenbaum L, Berkhout B. Tet-On Systems For Doxycycline-inducible Gene Expression. Curr Gene Ther 2016; 16: 156-167.
    100 Shen CJ, Chang KY, Lin BW, Lin WT, Su CM, Tsai JP et al. Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis. Theranostics 2020; 10: 7083-7099.
    101 Berk Ş, Janssen J, van Koetsveld PM, Dogan F, Değerli N, Özcan S et al. Modifying Effects of Glucose and Insulin/Insulin-Like Growth Factors on Colon Cancer Cells. Front Oncol 2021; 11: 645732.
    102 Sargent DJ, Wieand HS, Haller DG, Gray R, Benedetti JK, Buyse M et al. Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 2005; 23: 8664-8670.
    103 Kang J, Park H, Kim E. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. Neuropharmacology 2016; 100: 27-39.
    104 Kuo CY. Study the role of IRSp58M in colorectal cancer. Master thesis, National Cheng Kung University, Tainan, 2020.
    105 Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro 2004; 18: 703-710.
    106 Planutis AK, Holcombe RF, Planoutene MV, Planoutis KS. SW480 colorectal cancer cells that naturally express Lgr5 are more sensitive to the most common chemotherapeutic agents than Lgr5-negative SW480 cells. Anticancer Drugs 2015; 26: 942-947.
    107 Gao CF, Xie Q, Su YL, Koeman J, Khoo SK, Gustafson M et al. Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A 2005; 102: 10528-10533.
    108 Oliveira-Ferrer L, Rößler K, Haustein V, Schröder C, Wicklein D, Maltseva D et al. c-FOS suppresses ovarian cancer progression by changing adhesion. Br J Cancer 2014; 110: 753-763.
    109 Hassan MS, Awasthi N, Li J, Schwarz MA, Schwarz RE, von Holzen U. A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma. PLoS One 2017; 12: e0171824.
    110 Taibi A, Albouys J, Jacques J, Perrin ML, Yardin C, Durand Fontanier S et al. Comparison of implantation sites for the development of peritoneal metastasis in a colorectal cancer mouse model using non-invasive bioluminescence imaging. PLoS One 2019; 14: e0220360.
    111 Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26: 1394-1426.
    112 Merck & Co. I. Doxycycline Formulation 6105695-00003 datasheet, vol. Jul. 2020 [Revised Aug. 2021]. 1.2 edn. Merck & Co., Inc: U.S.A.
    113 DORYX (doxycycline hyclate) [package insert]. South Australia, Mayne Pharma International Pty Ltd; 1967, vol. 2022. U.S. Food and Drug Administration website.
    114 Clontech Laboratories I. Tet-Off® and Tet-On® Gene Expression Systems User Manual. Tetracycline vs. Doxycycline, vol. 2022. Takara Bio USA, Inc.: United States and Canada, October 2012.
    115 Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 2004; 9: 667-676.
    116 Coradini D, Casarsa C, Oriana S. Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment. Acta Pharmacol Sin 2011; 32: 552-564.
    117 Garbett D, Sauvanet C, Viswanatha R, Bretscher A. The tails of apical scaffolding proteins EBP50 and E3KARP regulate their localization and dynamics. Mol Biol Cell 2013; 24: 3381-3392.
    118 Bumgardner GL, Matas AJ, Chen S, Cahill D, Cunningham TR, Payne WD et al. COMPARISON OF IN VIVO AND IN VITRO IMMUNE RESPONSE TO PURIFIED HEPATOCYTES. Transplantation 1990; 49.
    119 Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995; 91: 1314-1319.
    120 Gurd BJ, Little JP, Perry CG. Does SIRT1 determine exercise-induced skeletal muscle mitochondrial biogenesis: differences between in vitro and in vivo experiments? J Appl Physiol (1985) 2012; 112: 926-928.
    121 Orabona C, Pallotta MT, Grohmann U. Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase. Mol Med 2012; 18: 834-842.
    122 Zhai L, Bell A, Ladomersky E, Lauing KL, Bollu L, Sosman JA et al. Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Front Immunol 2020; 11: 1185.
    123 Morita I. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat 2002; 68-69: 165-175.
    124 Hawkey CJ. COX-1 and COX-2 inhibitors. Best Pract Res Clin Gastroenterol 2001; 15: 801-820.
    125 Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl 1997; 49: 15-19.
    126 Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Molecular Cancer 2019; 18: 64.
    127 Yahaya MAF, Lila MAM, Ismail S, Zainol M, Afizan N. Tumour-Associated Macrophages (TAMs) in Colon Cancer and How to Reeducate Them. J Immunol Res 2019; 2019: 2368249.
    128 Aswad M, Assi S, Schif-Zuck S, Ariel A. CCL5 Promotes Resolution-Phase Macrophage Reprogramming in Concert with the Atypical Chemokine Receptor D6 and Apoptotic Polymorphonuclear Cells. J Immunol 2017; 199: 1393-1404.
    129 Fontanella R, Pelagalli A, Nardelli A, D'Alterio C, Ieranò C, Cerchia L et al. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion. Cancer Lett 2016; 370: 100-107.
    130 Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016; 126: 1208-1215.
    131 Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 2010; 189: 223-232.
    132 Iannantuono NVG, Emery G. Rab11FIP1 maintains Rab35 at the intercellular bridge to promote actin removal and abscission. J Cell Sci 2021; 134.
    133 Yuan TL, Amzallag A, Bagni R, Yi M, Afghani S, Burgan W et al. Differential Effector Engagement by Oncogenic KRAS. Cell Rep 2018; 22: 1889-1902.
    134 Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol Cancer Res 2015; 13: 1325-1335.
    135 Ihle NT, Byers LA, Kim ES, Saintigny P, Lee JJ, Blumenschein GR et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst 2012; 104: 228-239.
    136 Giampieri R, Lupi A, Ziranu P, Bittoni A, Pretta A, Pecci F et al. Retrospective Comparative Analysis of KRAS G12C vs. Other KRAS Mutations in mCRC Patients Treated With First-Line Chemotherapy Doublet + Bevacizumab. Front Oncol 2021; 11: 736104.
    137 Muñoz-Maldonado C, Zimmer Y, Medová M. A Comparative Analysis of Individual RAS Mutations in Cancer Biology. Front Oncol 2019; 9: 1088.
    138 Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduction and Targeted Therapy 2021; 6: 386.
    139 Funato Y, Terabayashi T, Suenaga N, Seiki M, Takenawa T, Miki H. IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res 2004; 64: 5237-5244.
    140 Sakakura C, Hagiwara A, Nakanishi M, Shimomura K, Takagi T, Yasuoka R et al. Differential gene expression profiles of gastric cancer cells established from primary tumour and malignant ascites. Br J Cancer 2002; 87: 1153-1161.
    141 Little AC, Pathanjeli P, Wu Z, Bao L, Goo LE, Yates JA et al. IL-4/IL-13 Stimulated Macrophages Enhance Breast Cancer Invasion Via Rho-GTPase Regulation of Synergistic VEGF/CCL-18 Signaling. Front Oncol 2019; 9: 456.
    142 Cuccato G, Polynikis A, Siciliano V, Graziano M, di Bernardo M, di Bernardo D. Modeling RNA interference in mammalian cells. BMC Syst Biol 2011; 5: 19.
    143 Shawan M, Sharma AR, Bhattacharya M, Mallik B, Akhter F, Shakil MS et al. Designing an effective therapeutic siRNA to silence RdRp gene of SARS-CoV-2. Infect Genet Evol 2021; 93: 104951.
    144 Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV et al. IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge. Cell Rep 2017; 19: 225-234.
    145 Zhang W, Chen L, Ma K, Zhao Y, Liu X, Wang Y et al. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells. Oncotarget 2016; 7: 75366-75378.
    146 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249.
    147 Kast DJ, Dominguez R. Mechanism of IRSp53 inhibition by 14-3-3. Nat Commun 2019; 10: 483.
    148 Govind S, Kozma R, Monfries C, Lim L, Ahmed S. Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol 2001; 152: 579-594.
    149 Madeira F, Madhusoodanan N, Lee J, Tivey ARN, Lopez R. Using EMBL-EBI Services via Web Interface and Programmatically via Web Services. Curr Protoc Bioinformatics 2019; 66: e74.
    150 Takada Y, Takada YK, Fujita M. Crosstalk between insulin-like growth factor (IGF) receptor and integrins through direct integrin binding to IGF1. Cytokine Growth Factor Rev 2017; 34: 67-72.
    151 Liu J, Zhang Y, Li Q, Wang Y. Transgelins: Cytoskeletal Associated Proteins Implicated in the Metastasis of Colorectal Cancer. Front Cell Dev Biol 2020; doi:10.3389/fcell.2020.573859.
    152 Maa MC, Lee JC, Chen YJ, Chen YJ, Lee YC, Wang ST et al. Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem 2007; 282: 19399-19409.

    無法下載圖示 校內:2026-07-28公開
    校外:2026-07-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE