簡易檢索 / 詳目顯示

研究生: 羅翊瑄
Lo, Yi-Hsuan
論文名稱: 氧化鋅複合還原氧化石墨烯中間層應用於鋰硫電池之研究
Zinc Oxide/Reduced Graphene Oxide Composite Interlayers for Lithium-Sulfur Batteries
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 75
中文關鍵詞: 鋰硫電池中間層
外文關鍵詞: Lithium sulfur battery, Interlayer
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製備氧化鋅複合還原氧化石墨烯(ZnO-rGO)複合材料並將其塗佈在正極(S-rGO)上,探討其作為鋰硫電池正極之電化學特性。利用化學浴法於還原氧化石墨烯(rGO)上成長氧化鋅奈米顆粒,繼以塗佈於硫與還原氧化石墨稀混摻的正極(S-rGO/ZnO-rGO),成功製備出以氧化鋅複合還原氧化石墨烯為中間層的正極,並應用於鋰硫電池之正極。由穿透式電子顯微鏡(TEM)分析得知,氧化鋅奈米顆粒之顆粒大小為 10–15 nm。吸附測驗可以得知ZnO-rGO複合材料相較於還原氧化石墨烯具有更強的多硫化物吸附能力。S-rGO/ZnO-rGO正極在0.2 C的充放電速率下,具有1664 mAh/g之起始放電電容量,其起始庫倫效率可達93.7%。經100次循環後仍有1205 mAh/g的可逆放電電容量,電容量維持率為72.4%。相較於S-rGO/rGO正極,而在0.2 C的充放電速率下,具有1489 mAh/g之起始放電電容量,其起始庫倫效率可達92.0%。經100次循環後僅具有1015 mAh/g的可逆放電電容量,電容量維持率為68.2%。此外,相較S-rGO/rGO正極,在1 C及2 C的充放電速率下,S-rGO/ZnO-rGO可逆容量分別從653增加到1003 mAh/g以及從493增加到813 mAh/g。由電化學阻抗頻譜分析(EIS)分析經0.2 C下充放電循環10次後之電極,得知S-rGO/ZnO-rGO具有較小的介面阻力及較大的鋰離子擴散係數,顯示ZnO-rGO中間層促進電荷通過電解質和Li2S2的絕緣層。由XPS分析經0.2 C下充放電循環20次後之正極,Zn 2p結合能的降低表示Zn-S鍵的形成並證實ZnO吸附多硫化物。由上述可知,本研究成功製備出氧化鋅複合還原氧化石墨烯中間層,並將其應用於鋰硫電池正極時有良好且穩定之電化學性能表現。

    In this work, an interlayer of ZnO nanoparticles (NPs)/ reduced graphene oxide (rGO) composites were directly coated on the top of the surface-rGO (S-rGO) cathode to trap and reutilize the polysulfides for the improvement of electrochemical performance of lithium-sulfur (Li-S) batteries. ZnO NPs with sizes of 10–15 nm were grown on rGO nanosheets (NSs) using chemical bath deposition method. The ZnO-rGO composites NSs show stronger polysulfide adsorption ability as compared to rGO NSs. The S-rGO/ZnO-rGO cathode exhibits excellent electrochemical utilization of sulfur with an improved cycling performance and superior rate performance as compared to the those of S-rGO/rGO cathode. At a current density of 0.2 C, a capacity loss of 27.6% is acquired in the S-rGO/ZnO-rGO cathode after 100 cycles with a reversible capacity of 1205 mAh/g. In contrast, a relative high capacity loss of 31.8% is acquired in the S-rGO/rGO cathode after 100 cycles with a lower reversible capacity of 1015 mAh/g. The ZnO-rGO interlayer also exhibits the improved high rate performance, showing reversible capacities of 1003 and 813 mAh/g at 1 C and 2 C rates, repectively. Both values are higher than those obtained by rGO interlayer, 653 and 493 mAh/g at 1 C and 2 C rates, respectively. The remarkably improved electrochemical performances result from that the ZnO-rGO interlayer not only facilitates the charge transfer through the electrolyte/ Li2S2 interface and the electronic/ionic conduction boundary as well as lithium-ion diffusion but also effectively arrests the polysulfide during repeated charge/discharge processes.

    Table of Contents Abstract I 摘要 II 致謝 IV Table of Contents V List of Tables VIII List of Figures IX Chapter 1 Introduction and Motivation 1 1.1 Preface 1 1.2 Lithium Ion Battery 4 1.2.1. Introduction and Development 4 1.2.2. The Working Principle of Lithium-ion Battery 6 1.3 Lithium Sulfur Battery 8 1.4 Construction of Interlayer 11 1.5 Motivation 13 Chapter 2 Literature Reviews 14 2.1 Reduced Graphene Oxide for Lithium-sulfur Batteries 14 2.1.1 Characterizations of Reduced Graphene Oxide 14 2.1.2 Applications of Reduced Graphene Oxide for Lithium-sulfur Batteries 15 2.2 Metal Oxides for Lithium-Sulfur Batteries 19 2.2.1 Characterizations of Zinc Oxide 19 2.2.2 Polysulfides Adsorption by Metal Oxides 20 2.2.3 Applications of Metal Oxides for Lithium-Sulfur Batteries 23 Chapter 3 Experimental Methods 26 3.1. Materials 26 3.1.1 Materials of the rGO NSs 26 3.1.2 Materials of the ZnO-rGO Composites 26 3.1.3 Materials of the Cathodes 26 3.1.4 Materials of the Coin Cell 26 3.2. Fabrication of S-rGO/170ZnO-rGO Cathode 27 3.2.1 Fabrication of the rGO NSs 28 3.2.2 Fabrication of the ZnO-rGO Composites 28 3.2.3 Fabrication of the S Cathode 28 3.2.4 Fabrication of the S-rGO Cathode 28 3.2.5 Fabrication of the S-rGO/rGO Cathode 28 3.2.6 Fabrication of the S-rGO/170ZnO-rGO Cathode 29 3.2.7 Fabrication of the Coin Cell 29 3.3. Characterizations 30 3.3.1 Scanning Electron Microscopy (SEM) 30 3.3.2 Transmission Electron Microscopy (TEM) 31 3.3.3 UV-Visible Absorption Spectrum (UV-vis) 32 3.3.4 Raman Spectroscopy 33 3.3.5 X-Ray Photoelectron Spectroscopy (XPS) 34 3.3.6 Cycling Performance 35 3.3.7 Cyclic Voltammetry (CV) 35 3.3.8 Electrochemical Impedance Spectroscopy (EIS) 36 Chapter 4. Results and Discussion 37 4.1 S-rGO Cathode for Lithium-sulfur Battery 37 4.1.1 Formation and Characterizations of rGO Nanosheets 37 4.1.2 Electrochemical Performance of S-rGO Cathode 40 4.1.3 Cyclic Voltammetry (CV) of S-rGO Cathode 41 4.2 S-rGO/rGO Cathode for Lithium-sulfur Battery 42 4.2.1 Formation and Characterizations of rGO Interlayer 42 4.2.2 Electrochemical Performance of S-rGO/rGO Cathode 43 4.2.3 Cyclic Voltammetry (CV) of S-rGO/rGO Cathode 45 4.2.4 EIS Characterization of S-rGO/rGO Cathode 45 4.3 S-rGO/170ZnO-rGO Cathode for Lithium-sulfur Battery 48 4.3.1 Formation and Characterizations of ZnO-rGO Composite 48 4.3.2 Adsorption Test of ZnO/rGO and rGO NSs 50 4.3.3 Electrochemical Performance of S-rGO/170ZnO-rGO Cathode 51 4.3.4 Cyclic Voltammetry (CV) of S-rGO/170ZnO-rGO Cathode 54 4.3.5 EIS Characterization of S-rGO/170ZnO-rGO Cathode 56 4.3.6 Analyses of the Batteries After Cycling 58 Chap 5 Conclusion 64 Chap 6 Reference 66 Appendix 1 Abbreviations and Symbols 75

    1. R. Van Noorden: 'The rechargeable revolution: A better battery', Nature News, 2014, 507(7490), 26.
    2. L. H. Saw, Y. Ye, and A. A. Tay: 'Integration issues of lithium-ion battery into electric vehicles battery pack', Journal of Cleaner Production, 2016, 113, 1032-1045.
    3. S. Yuvaraj, R. K. Selvan, and Y. S. Lee: 'An overview of AB 2 O 4-and A 2 BO 4-structured negative electrodes for advanced Li-ion batteries', Rsc Advances, 2016, 6(26), 21448-21474.
    4. K. Brandt: 'Historical development of secondary lithium batteries', Solid State Ionics, 1994, 69(3-4), 173-183.
    5. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang: 'Lithium metal anodes for rechargeable batteries', Energy & Environmental Science, 2014, 7(2), 513-537.
    6. D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller: 'A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions', Solid state ionics, 2002, 148(3-4), 405-416.
    7. A. Jana and R. E. García: 'Lithium dendrite growth mechanisms in liquid electrolytes', Nano Energy, 2017, 41, 552-565.
    8. L. Li, S. Li, and Y. Lu: 'Suppression of dendritic lithium growth in lithium metal-based batteries', Chemical Communications, 2018, 54(50), 6648-6661.
    9. B. Scrosati: 'Lithium rocking chair batteries: an old concept?', Journal of The Electrochemical Society, 1992, 139(10), 2776-2781.
    10. G. E. Blomgren: 'The development and future of lithium ion batteries', Journal of The Electrochemical Society, 2017, 164(1), A5019-A5025.
    11. J.-M. Tarascon and M. Armand: 'Issues and challenges facing rechargeable lithium batteries', in 'Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group', 171-179; 2011, World Scientific.
    12. N. Omar, M. Daowd, P. v. d. Bossche, O. Hegazy, J. Smekens, T. Coosemans, and J. v. Mierlo: 'Rechargeable energy storage systems for plug-in hybrid electric vehicles—Assessment of electrical characteristics', Energies, 2012, 5(8), 2952-2988.
    13. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang: 'Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries', Energy & Environmental Science, 2011, 4(8), 2682-2699.
    14. J. Xu, S. Dou, H. Liu, and L. Dai: 'Cathode materials for next generation lithium ion batteries', Nano Energy, 2013, 2(4), 439-442.
    15. S. H. Chung and A. Manthiram: 'Li/S', Encyclopedia of Electrochemistry: Online, 2007, 1-36.
    16. J. Janek and P. Adelhelm: 'Next generation technologies', in 'Lithium-Ion Batteries: Basics and Applications', 187-207; 2018, Springer.
    17. B. L. Ellis, K. T. Lee, and L. F. Nazar: 'Positive electrode materials for Li-ion and Li-batteries', Chemistry of materials, 2010, 22(3), 691-714.
    18. A. Manthiram, Y. Fu, and Y.-S. Su: 'Challenges and prospects of lithium–sulfur batteries', Accounts of chemical research, 2012, 46(5), 1125-1134.
    19. X. Huang, Z. Wang, R. Knibbe, B. Luo, S. A. Ahad, D. Sun, and L. Wang: 'Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities', Energy Technology, 2019, 7(8), 1801001.
    20. A. Fotouhi, D. Auger, L. O’Neill, T. Cleaver, and S. Walus: 'Lithium-sulfur battery technology readiness and applications—a review', Energies, 2017, 10(12), 1937.
    21. M. Wild, L. O'neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, and G. Offer: 'Lithium sulfur batteries, a mechanistic review', Energy & Environmental Science, 2015, 8(12), 3477-3494.
    22. A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su: 'Rechargeable lithium–sulfur batteries', Chemical reviews, 2014, 114(23), 11751-11787.
    23. L. Fan, M. Li, X. Li, W. Xiao, Z. Chen, and J. Lu: 'Interlayer material selection for lithium-sulfur batteries', Joule, 2019.
    24. X. Li and X. Sun: 'Interface design and development of coating materials in lithium–sulfur batteries', Advanced Functional Materials, 2018, 28(30), 1801323.
    25. Z. Zhang, Y. Lai, Z. Zhang, K. Zhang, and J. Li: 'Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries', Electrochimica Acta, 2014, 129, 55-61.
    26. C. Wang, K. Su, W. Wan, H. Guo, H. Zhou, J. Chen, X. Zhang, and Y. Huang: 'High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries', Journal of Materials Chemistry A, 2014, 2(14), 5018-5023.
    27. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai: 'Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability', Nano letters, 2011, 11(7), 2644-2647.
    28. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, and L. F. Nazar: 'A highly efficient polysulfide mediator for lithium–sulfur batteries', Nature communications, 2015, 6(1), 1-8.
    29. J. Qu, S. Lv, X. Peng, S. Tian, J. Wang, and F. Gao: 'Nitrogen-doped porous “green carbon” derived from shrimp shell: combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery', Journal of Alloys and Compounds, 2016, 671, 17-23.
    30. S. Evers, T. Yim, and L. F. Nazar: 'Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery', The Journal of Physical Chemistry C, 2012, 116(37), 19653-19658.
    31. C. Xu, H. Zhou, C. Fu, Y. Huang, L. Chen, L. Yang, and Y. Kuang: 'Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries', Electrochimica Acta, 2017, 232, 156-163.
    32. J. Balach, J. Linnemann, T. Jaumann, and L. Giebeler: 'Metal-based nanostructured materials for advanced lithium–sulfur batteries', Journal of Materials Chemistry A, 2018, 6(46), 23127-23168.
    33. Z. Li, Y. Huang, L. Yuan, Z. Hao, and Y. Huang: 'Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries', Carbon, 2015, 92, 41-63.
    34. X. Liang and L. F. Nazar: 'In situ reactive assembly of scalable core–shell sulfur–MnO2 composite cathodes', ACS nano, 2016, 10(4), 4192-4198.
    35. Y. Zhao, W. Zhu, G. Z. Chen, and E. J. Cairns: 'Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries', Journal of Power Sources, 2016, 327, 447-456.
    36. F. Yin, J. Ren, Y. Zhang, T. Tan, and Z. Chen: 'A PPy/ZnO functional interlayer to enhance electrochemical performance of lithium/sulfur batteries', Nanoscale research letters, 2018, 13(1), 307.
    37. X. Liang, Q. Song, Y. Liu, and H. Liu: 'Preparation of ZnO porous nanostructures and its application in cathode material for lithium sulfur battery', Int. J. Electrochem. Sci, 2015, 10(11), 9333-9341.
    38. Y. Zhao, Z. Liu, L. Sun, Y. Zhang, Y. Feng, X. Wang, I. Kurmanbayeva, and Z. Bakenov: 'Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries', Beilstein Journal of Nanotechnology, 2018, 9(1), 1677-1685.
    39. P. Guo, D. Liu, Z. Liu, X. Shang, Q. Liu, and D. He: 'Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries', Electrochimica Acta, 2017, 256, 28-36.
    40. R. Yi, C. Liu, Y. Zhao, L. J. Hardwick, Y. Li, X. Geng, Q. Zhang, L. Yang, and C. Zhao: 'A light-weight free-standing graphene foam-based interlayer towards improved Li-S cells', Electrochimica Acta, 2019, 299, 479-488.
    41. A. Eftekhari and D.-W. Kim: 'Cathode materials for lithium–sulfur batteries: a practical perspective', Journal of Materials Chemistry A, 2017, 5(34), 17734-17776.
    42. S. Pei and H.-M. Cheng: 'The reduction of graphene oxide', Carbon, 2012, 50(9), 3210-3228.
    43. A. Lerf, H. He, M. Forster, and J. Klinowski: 'Structure of graphite oxide revisited', The Journal of Physical Chemistry B, 1998, 102(23), 4477-4482.
    44. S. C. Ray: 'Application and uses of graphene oxide and reduced graphene oxide', Applications of graphene and graphene-oxide based nanomaterials, 2015, 39-55.
    45. S. H. Huh: 'Thermal reduction of graphene oxide', in 'Physics and Applications of Graphene-Experiments', 2011, IntechOpen.
    46. C. K. Chua and M. Pumera: 'Chemical reduction of graphene oxide: a synthetic chemistry viewpoint', Chemical Society Reviews, 2014, 43(1), 291-312.
    47. G. Eda and M. Chhowalla: 'Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics', Advanced materials, 2010, 22(22), 2392-2415.
    48. J. K. Lee, K. B. Smith, C. M. Hayner, and H. H. Kung: 'Silicon nanoparticles–graphene paper composites for Li ion battery anodes', Chemical communications, 2010, 46(12), 2025-2027.
    49. W. Bao, Z. Zhang, Y. Qu, C. Zhou, X. Wang, and J. Li: 'Confine sulfur in mesoporous metal–organic framework@ reduced graphene oxide for lithium sulfur battery', Journal of alloys and compounds, 2014, 582, 334-340.
    50. C. Wang, J. Zhou, and F. Du: 'Synthesis of highly reduced graphene oxide for supercapacitor', Journal of Nanomaterials, 2016, 2016.
    51. G. Eda, Y.-Y. Lin, S. Miller, C.-W. Chen, W.-F. Su, and M. Chhowalla: 'Transparent and conducting electrodes for organic electronics from reduced graphene oxide', Applied Physics Letters, 2008, 92(23), 209.
    52. D. Cao, Y. Jiao, Q. Cai, D. Han, Q. Zhang, Y. Ma, A. Dong, and H. Zhu: 'Stable lithium–sulfur full cells enabled by dual functional and interconnected mesocarbon arrays', Journal of Materials Chemistry A, 2019, 7(7), 3289-3297.
    53. J.-Q. Huang, Z.-L. Xu, S. Abouali, M. A. Garakani, and J.-K. Kim: 'Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries', Carbon, 2016, 99, 624-632.
    54. A. A. Razzaq, Y. Yao, R. Shah, P. Qi, L. Miao, M. Chen, X. Zhao, Y. Peng, and Z. Deng: 'High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes', Energy Storage Materials, 2019, 16, 194-202.
    55. Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui: 'Improving the performance of lithium–sulfur batteries by conductive polymer coating', ACS nano, 2011, 5(11), 9187-9193.
    56. A. B. Puthirath, A. Baburaj, K. Kato, D. Salpekar, N. Chakingal, Y. Cao, G. Babu, and P. M. Ajayan: 'High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery', Electrochimica Acta, 2019, 306, 489-497.
    57. J.-Q. Huang, W. G. Chong, Q. Zheng, Z.-L. Xu, J. Cui, S. Yao, C. Wang, and J.-K. Kim: 'Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries', Electrochimica Acta, 2018, 268, 1-9.
    58. Y.-S. Su and A. Manthiram: 'Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer', Nature communications, 2012, 3(1), 1-6.
    59. Y.-S. Su and A. Manthiram: 'A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer', Chemical communications, 2012, 48(70), 8817-8819.
    60. T. Z. Zhuang, J. Q. Huang, H. J. Peng, L. Y. He, X. B. Cheng, C. M. Chen, and Q. Zhang: 'Rational integration of polypropylene/graphene oxide/nafion as ternary‐layered separator to retard the shuttle of polysulfides for lithium–sulfur batteries', Small, 2016, 12(3), 381-389.
    61. Y. Hao, D. Xiong, W. Liu, L. Fan, D. Li, and X. Li: 'Controllably designed “vice-electrode” interlayers harvesting high performance lithium sulfur batteries', ACS applied materials & interfaces, 2017, 9(46), 40273-40280.
    62. R. Ponraj, A. G. Kannan, J. H. Ahn, J. H. Lee, J. Kang, B. Han, and D.-W. Kim: 'Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium–sulfur cells with enhanced cycling stability', ACS applied materials & interfaces, 2017, 9(44), 38445-38454.
    63. H. Deng, L. Yao, Q.-A. Huang, Q. Su, J. Zhang, and G. Du: 'Highly improved electrochemical performance of Li-S batteries with heavily nitrogen-doped three-dimensional porous graphene interlayers', Materials Research Bulletin, 2016, 84, 218-224.
    64. Z. Cao, C. Ma, Y. Yin, J. Zhang, Y. Ding, M. Shi, and S. Yang: 'Carbonized non-woven fabric films as adsorbing interlayers to enhance electrochemical performance of lithium–sulfur batteries', New Journal of Chemistry, 2015, 39(12), 9659-9664.
    65. X. Zhou, Q. Liao, T. Bai, and J. Yang: 'Rational design of graphene@ nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium–sulfur batteries', Journal of Materials Science, 2017, 52(13), 7719-7732.
    66. Q. Zhao, Q. Zhu, Y. An, R. Chen, N. Sun, F. Wu, and B. Xu: 'A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries', Applied Surface Science, 2018, 440, 770-777.
    67. F. Liu, J. Liang, C. Zhang, L. Yu, J. Zhao, C. Liu, Q. Lan, S. Chen, Y.-C. Cao, and G. Zheng: 'Reduced graphene oxide encapsulated sulfur spheres for the lithium-sulfur battery cathode', Results in physics, 2017, 7, 250-255.
    68. X. Wang, Z. Wang, and L. Chen: 'Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery', Journal of Power Sources, 2013, 242, 65-69.
    69. H. Li, L. Sun, Y. Zhang, T. Tan, G. Wang, and Z. Bakenov: 'Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer', Journal of energy chemistry, 2017, 26(6), 1276-1281.
    70. R. Wahab, S. Ansari, Y.-S. Kim, H.-K. Seo, and H.-S. Shin: 'Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method', Applied Surface Science, 2007, 253(18), 7622-7626.
    71. T. Frade, M. M. Jorge, and A. Gomes: 'One-dimensional ZnO nanostructured films: Effect of oxide nanoparticles', Materials Letters, 2012, 82, 13-15.
    72. W. I. Park, G.-C. Yi, J.-W. Kim, and S.-M. Park: 'Schottky nanocontacts on ZnO nanorod arrays', Applied physics letters, 2003, 82(24), 4358-4360.
    73. D. Banerjee, J. Lao, D. Wang, J. Huang, Z. Ren, D. Steeves, B. Kimball, and M. Sennett: 'Large-quantity free-standing ZnO nanowires', Applied Physics Letters, 2003, 83(10), 2061-2063.
    74. T. Xu, P. Ji, M. He, and J. Li: 'Growth and structure of pure ZnO micro/nanocombs', Journal of Nanomaterials, 2012, 2012.
    75. A. Umar and Y. Hahn: 'ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties', Nanotechnology, 2006, 17(9), 2174.
    76. V. Polshettiwar, B. Baruwati, and R. S. Varma: 'Self-assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis', ACS nano, 2009, 3(3), 728-736.
    77. D. Kalpana, K. Omkumar, S. S. Kumar, and N. Renganathan: 'A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor', Electrochimica Acta, 2006, 52(3), 1309-1315.
    78. K. S. Lee, C. W. Park, S. J. Lee, and J.-D. Kim: 'Hierarchical zinc oxide/graphene oxide composites for energy storage devices', Journal of Alloys and Compounds, 2018, 739, 522-528.
    79. X. Huang, X. Xia, Y. Yuan, and F. Zhou: 'Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries', Electrochimica Acta, 2011, 56(14), 4960-4965.
    80. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and Morkoç: 'A comprehensive review of ZnO materials and devices', Journal of applied physics, 2005, 98(4), 11.
    81. X. Ji, S. Evers, R. Black, and L. F. Nazar: 'Stabilizing lithium–sulphur cathodes using polysulphide reservoirs', Nature communications, 2011, 2(1), 1-7.
    82. M. Yu, A. Wang, F. Tian, H. Song, Y. Wang, C. Li, J.-D. Hong, and G. Shi: 'Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery', Nanoscale, 2015, 7(12), 5292-5298.
    83. Z. Sun, Y. Guo, B. Li, T. Tan, and Y. Zhao: 'ZnO/carbon nanotube/reduced graphene oxide composite film as an effective interlayer for lithium/sulfur batteries', Solid State Sciences, 2019, 95, 105924.
    84. T. Zhao, Y. Ye, X. Peng, G. Divitini, H. K. Kim, C. Y. Lao, P. R. Coxon, K. Xi, Y. Liu, and C. Ducati: 'Advanced lithium–sulfur batteries enabled by a bio‐inspired polysulfide adsorptive brush', Advanced Functional Materials, 2016, 26(46), 8418-8426.
    85. L. Yang, G. Li, X. Jiang, T. Zhang, H. Lin, and J. Y. Lee: 'Balancing the chemisorption and charge transport properties of the interlayer in lithium–sulfur batteries', Journal of Materials Chemistry A, 2017, 5(24), 12506-12512.
    86. J. Liu, L. Yuan, K. Yuan, Z. Li, Z. Hao, J. Xiang, and Y. Huang: 'SnO 2 as a high-efficiency polysulfide trap in lithium–sulfur batteries', Nanoscale, 2016, 8(28), 13638-13645.
    87. Y. Lai, P. Wang, F. Qin, M. Xu, J. Li, K. Zhang, and Z. Zhang: 'A carbon nanofiber@ mesoporous δ-MnO2 nanosheet-coated separator for high-performance lithium-sulfur batteries', Energy Storage Materials, 2017, 9, 179-187.
    88. J. Li, Y. Huang, S. Zhang, W. Jia, X. Wang, Y. Guo, D. Jia, and L. Wang: 'Decoration of silica nanoparticles on polypropylene separator for lithium–sulfur batteries', ACS applied materials & interfaces, 2017, 9(8), 7499-7504.
    89. J. Balach, T. Jaumann, S. Mühlenhoff, J. Eckert, and L. Giebeler: 'Enhanced polysulphide redox reaction using a RuO 2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium–sulphur batteries', Chemical Communications, 2016, 52(52), 8134-8137.
    90. X. Qian, L. Jin, D. Zhao, X. Yang, S. Wang, X. Shen, D. Rao, S. Yao, Y. Zhou, and X. Xi: 'Ketjen black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery', Electrochimica Acta, 2016, 192, 346-356.
    91. Y. M. Chen, S. T. Hsu, Y. H. Tseng, T. F. Yeh, S. S. Hou, J. S. Jan, Y. L. Lee, and H. Teng: 'Minimization of Ion–Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium‐Ion Batteries', Small, 2018, 14(12), 1703571.
    92. J. Liao and Z. Ye: 'Nontrivial Effects of “Trivial” Parameters on the Performance of Lithium–Sulfur Batteries', Batteries, 2018, 4(2), 22.
    93. B. Inkson: 'Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization', in 'Materials characterization using nondestructive evaluation (NDE) methods', 17-43; 2016, Elsevier.
    94. M. T. Postek, K. S. Howard, A. H. Johnson, and K. L. McMichael: 'The scanning electron microscope', Handbook of charged particle optics, 1997, 363-399.
    95. T. Spectronic: 'Basic UV-Vis theory, concepts and applications', Thermo Spectronic, 2012, 1-28.
    96. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, and P. L. Martin-Hirsch: 'Using Raman spectroscopy to characterize biological materials', Nature protocols, 2016, 11(4), 664-687.
    97. J. S. Lupoi, E. Gjersing, and M. F. Davis: 'Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy', Frontiers in bioengineering and biotechnology, 2015, 3, 50.
    98. C. S. Fadley: 'X-ray photoelectron spectroscopy: Progress and perspectives', Journal of Electron Spectroscopy and Related Phenomena, 2010, 178, 2-32.
    99. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey: 'A practical beginner’s guide to cyclic voltammetry', Journal of Chemical Education, 2018, 95(2), 197-206.
    100. Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, and Y. Liu: 'Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading', Journal of the Electrochemical Society, 2013, 160(4), A553.
    101. M. J. Fernández-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. Tascón: 'Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions', The Journal of Physical Chemistry C, 2010, 114(14), 6426-6432.
    102. J. McDonald-Wharry, M. Manley-Harris, and K. Pickering: 'Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy', Carbon, 2013, 59, 383-405.
    103. R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, and G. Gryglewicz: 'Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy', Materials, 2018, 11(7), 1050.
    104. M. A. Raj and S. A. John: 'Fabrication of electrochemically reduced graphene oxide films on glassy carbon electrode by self-assembly method and their electrocatalytic application', The Journal of Physical Chemistry C, 2013, 117(8), 4326-4335.
    105. W. Lin, Y. Chen, P. Li, J. He, Y. Zhao, Z. Wang, J. Liu, F. Qi, B. Zheng, and J. Zhou: 'Enhanced performance of lithium sulfur battery with a reduced graphene oxide coating separator', Journal of The Electrochemical Society, 2015, 162(8), A1624.
    106. G. Ma, Z. Wen, Q. Wang, C. Shen, P. Peng, J. Jin, and X. Wu: 'Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer', Journal of Power Sources, 2015, 273, 511-516.
    107. H. Qu, J. Zhang, A. Du, B. Chen, J. Chai, N. Xue, L. Wang, L. Qiao, C. Wang, and X. Zang: 'Multifunctional sandwich‐structured electrolyte for high‐performance lithium–sulfur batteries', Advanced Science, 2018, 5(3), 1700503.
    108. S. Liu, K. Xie, Z. Chen, Y. Li, X. Hong, J. Xu, L. Zhou, J. Yuan, and C. Zheng: 'A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium–sulfur batteries', Journal of Materials Chemistry A, 2015, 3(21), 11395-11402.
    109. J. Shim, K. A. Striebel, and E. J. Cairns: 'The lithium/sulfur rechargeable cell: effects of electrode composition and solvent on cell performance', Journal of the Electrochemical Society, 2002, 149(10), A1321.
    110. G. C. Li, G. R. Li, S. H. Ye, and X. P. Gao: 'A polyaniline‐coated sulfur/carbon composite with an enhanced high‐rate capability as a cathode material for lithium/sulfur batteries', Advanced Energy Materials, 2012, 2(10), 1238-1245.
    111. X. Wu, S. Li, B. Wang, J. Liu, and M. Yu: 'One-step synthesis of the nickel foam supported network-like ZnO nanoarchitectures assembled with ultrathin mesoporous nanosheets with improved lithium storage performance', RSC advances, 2015, 5(99), 81341-81347.
    112. A. Gulati, J. Malik, and R. Kakkar: 'Mesoporous rGO@ ZnO composite: Facile synthesis and excellent water treatment performance by pesticide adsorption and catalytic oxidative dye degradation', Chemical Engineering Research and Design, 2020.
    113. Q. Li, J. Chen, L. Fan, X. Kong, and Y. Lu: 'Progress in electrolytes for rechargeable Li-based batteries and beyond', Green Energy & Environment, 2016, 1(1), 18-42.
    114. Y. He, Z. Chang, S. Wu, and H. Zhou: 'Effective strategies for long-cycle life lithium–sulfur batteries', Journal of Materials Chemistry A, 2018, 6(15), 6155-6182.
    115. J. Chen, Z. Shen, S. Lv, K. Shen, R. Wu, X.-f. Jiang, T. Fan, J. Chen, and Y. Li: 'Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with “one stone” as Z-scheme photocatalysts for highly efficient hydrogen production', Journal of Materials Chemistry A, 2018, 6(40), 19631-19642.

    無法下載圖示 校內:2025-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE