| 研究生: |
李介文 Li, Chieh-Wen |
|---|---|
| 論文名稱: |
顆粒大小與密度對流化特性之影響分析 Analysis of the Influence of Particle Size and Density on Fluidization Characteristics |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 流體化床 、CFD-DEM 、氣固兩相流 |
| 外文關鍵詞: | Fluidized bed, CFD-DEM, Gas-Solid flow |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是利用綠豆孔隙率探討不同顆粒參數在流體化床冷流場的數值模擬結果進行探討,同時找出合適顆粒碰撞參數,並探討各項顆粒碰撞參數於流體化床的影響。以往非球形幾何形狀顆粒在流體化床的流化行為是難以預測的,本研究希望以球形顆粒探討非球形的流化行為。本文設計之流體化床中,在固定雷諾數的條件下模擬顆粒流動情況,同時為了使邊界條件符合物理現象而拉長流動區域,數值模擬的結果利用綠豆顆粒密度、顆粒直徑,並且找出合適顆粒碰撞參數,最後利用數值分析將多組不同顆粒直徑、密度組合、合適顆粒碰撞參數結果與實驗結果的噴流高度作探討。本研究以綠豆幾何形狀求得等效直徑修正率,且透過研究方法可提供不同幾何形狀與參數的顆粒得到等效直徑修正範圍。
This article mainly uses the particle size ratio of green bean to explore the numerical simulation results of different particle parameters in the fluidized bed cold flow field. At the same time, it finds suitable particle collision parameters and discusses the impact of particle collision parameters on the fluidized bed. The fluidization behavior of geometric particles in a fluidized bed is difficult to predict. This study hopes to discuss non-spherical fluidization behavior with spherical particles. In the fluidized bed designed here, the flow of particles is simulated under the condition of a fixed Reynolds number. At the same time, the flow area is extended in order to make the boundary conditions conform to the physical phenomenon. The results of the numerical simulation use green bean particle density and particle diameter, and find a suitable. Finally, numerical analysis suitable result is used to combine multiple groups of different particle diameters and densities, and suitable particles. In this study, the geometric shape of green bean is used to obtain equal diameter correction rate, and the establishment of particles with different geometric shapes and parameters is provided through research methods. Effective diameter correction rate parameter range.
ANSYS FLUENT Theory Guide.(2011) Release 14.0,November
ANSYS FLUENT User’s Guide(2011)Release 14.0,November
Azmir, J., Hou, Q., & Yu, A. (2018). Discrete particle simulation of food grain drying in a fluidised bed. Powder Technology, 323, 238-249.
Benyahia, S., & Galvin, J. E. (2010). Estimation of numerical errors related to some basic assumptions in discrete particle methods. Industrial & Engineering Chemistry Research, 49(21), 10588-10605.
Chu, K. W., Wang, B., Xu, D. L., Chen, Y. X., & Yu, A. B. (2011). CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science, 66(5), 834-847.
Computational fluid dynamic simulation of hydrodynamic behavior in a two-dimensional conical spouted bed. Energy & fuels, 24(11), 6086-6098.
EDEM (2017) Theory Reference
Frisullo, P. I. E. R. A. N. G. E. L. O., Barnabà, M., Navarini, L., & Del Nobile, M. A. (2012). Coffea arabica beans microstructural changes induced by roasting: An X-ray microtomographic investigation. Journal of food engineering, 108(1), 232-237.
Hosseini, S. H., Ahmadi, G., Saeedi Razavi, B., & Zhong, W. (2010). Geldart, D. (1969). Fluidization Engineering: By D. Kunii and O. Levenspiel, John Wiley and Sons, Ltd., New York, 1969. 534 pp.; 220 illus. Price£ 6.12. 0
Hou, Q. F., Zhou, Z. Y., & Yu, A. B. (2012). Computational study of heat transfer in a bubbling fluidized bed with a horizontal tube. AIChE journal, 58(5), 1422-1434.
https://reurl.cc/z8dYXN
Hu, C., Luo, K., Wang, S., Junjie, L., & Fan, J. (2019). The effects of collisional parameters on the hydrodynamics and heat transfer in spouted bed: A CFD-DEM study. Powder Technology, 353, 132-144.
Jasion, G., Shrimpton, J., Danby, M., & Takeda, K. (2011). Performance of numerical integrators on tangential motion of DEM within implicit flow solvers. Computers & chemical engineering, 35(11), 2218-2226.
Kafui, D. K., Johnson, S., Thornton, C., & Seville, J. P. K. (2011). Parallelization of a Lagrangian–Eulerian DEM/CFD code for application to fluidized beds. Powder Technology, 207(1-3), 270-278.
Liu, G. Q., Li, S. Q., Zhao, X. L., & Yao, Q. (2008). Experimental studies of particle flow dynamics in a two-dimensional spouted bed. Chemical Engineering Science, 63(4), 1131-1141.
Liu, D., Bu, C., & Chen, X. (2013). Development and test of CFD–DEM model for complex geometry: A coupling algorithm for Fluent and DEM. Computers & Chemical Engineering, 58, 260-268.
Marchelli, F., Moliner, C., Bosio, B., & Arato, E. (2019). A CFD-DEM sensitivity analysis: The case of a pseudo-2D spouted bed. Powder Technology, 353, 409-425.
Mahmoodi, B., Hosseini, S. H., & Ahmadi, G. (2019). CFD–DEM simulation of a pseudo-two-dimensional spouted bed comprising coarse particles. Particuology, 43, 171-180
Moliner, C., Marchelli, F., Bosio, B., & Arato, E. (2017). Modelling of spouted and spout-fluid beds: Key for their successful scale up. Energies, 10(11), 1729.
Sutkar, V. S., Deen, N. G., & Kuipers, J. A. M. (2013). Spout fluidized beds: Recent advances in experimental and numerical studies. Chemical engineering science, 86, 124-136.
Stroh, A., Alobaid, F., Hasenzahl, M. T., Hilz, J., Ströhle, J., & Epple, B. (2016). Comparison of three different CFD methods for dense fluidized beds and validation by a cold flow experiment. Particuology, 29, 34-47.
Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder technology, 71(3), 239-250.
Geng, F., Li, Y., Wang, X., Yuan, Z., Yan, Y., & Luo, D. (2011). Simulation of dynamic processes on flexible filamentous particles in the transverse section of a rotary dryer and its
Golshan, S., Zarghami, R., & Mostoufi, N. (2017). Hydrodynamics of slot-rectangular spouted beds: Process intensification. Chemical Engineering Research and Design, 121, 315-328.
Ren, B., Zhong, W., Chen, Y., Chen, X., Jin, B., Yuan, Z., & Lu, Y. (2012). CFD-DEM simulation of spouting of corn-shaped particles. Particuology, 10(5), 562-572.
Thanit, T., Wiwut, W., Tawatchai, T., Toshihiro, T., Toshitsugu, T., & Yutaka, Y. (2005). Prediction of gas-particle dynamics and heat transfer in a two-dimensional spouted bed. Advanced Powder Technology, 16(3), 275-293.
Wang, Y., Wang, Y., & Ling, H. (2010). A new carrier gas type for accurate measurement of N 2 O by GC-ECD. Advances in atmospheric sciences, 27(6), 1322-1330.
Oliveros, N. O., Hernández, J. A., Sierra-Espinosa, F. Z., Guardián-Tapia, R., & Pliego-Solórzano, R. (2017). Experimental study of dynamic porosity and its effects on simulation of the coffee beans roasting. Journal of Food Engineering, 199, 100-112.
Philippsen, C. G., Vilela, A. C. F., & Dalla Zen, L. (2015). Fluidized bed modeling applied to the analysis of processes: review and state of the art. Journal of Materials Research and Technology, 4(2), 208-216.
Zhao, X. L., Li, S. Q., Liu, G. Q., Song, Q., & Yao, Q. (2008). Flow patterns of solids in a two-dimensional spouted bed with draft plates: PIV measurement and DEM simulations. Powder Technology, 183(1), 79-87.
Zhang, H., Liu, M., Li, T., Huang, Z., Sun, X., Bo, H., & Dong, Y. (2017). Experimental investigation on gas-solid hydrodynamics of coarse particles in a two-dimensional spouted bed. Powder Technology, 307, 175-183.
Zhong, W., Xiong, Y., Yuan, Z., & Zhang, M. (2006). DEM simulation of gas–solid flow behaviors in spout-fluid bed. Chemical engineering science, 61(5), 1571-1584.
鄭曉野.(2016).鼓泡流化床曳力模型及氣固流動特形數值研究.南京航空航天大學能源與動力學院學位論文
賴宣儒.(2019).流化床甲烷乾重組產製合成氣之實驗探討.中興大學機械工程學系學位論文
袁竹林,朱立平,.氣固兩相流動與數值模擬.東南大學出版社
陳巨輝,王帥,等人.流化床技術模擬研究.科學出版社
校內:2025-08-28公開