簡易檢索 / 詳目顯示

研究生: 李介文
Li, Chieh-Wen
論文名稱: 顆粒大小與密度對流化特性之影響分析
Analysis of the Influence of Particle Size and Density on Fluidization Characteristics
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 流體化床CFD-DEM氣固兩相流
外文關鍵詞: Fluidized bed, CFD-DEM, Gas-Solid flow
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是利用綠豆孔隙率探討不同顆粒參數在流體化床冷流場的數值模擬結果進行探討,同時找出合適顆粒碰撞參數,並探討各項顆粒碰撞參數於流體化床的影響。以往非球形幾何形狀顆粒在流體化床的流化行為是難以預測的,本研究希望以球形顆粒探討非球形的流化行為。本文設計之流體化床中,在固定雷諾數的條件下模擬顆粒流動情況,同時為了使邊界條件符合物理現象而拉長流動區域,數值模擬的結果利用綠豆顆粒密度、顆粒直徑,並且找出合適顆粒碰撞參數,最後利用數值分析將多組不同顆粒直徑、密度組合、合適顆粒碰撞參數結果與實驗結果的噴流高度作探討。本研究以綠豆幾何形狀求得等效直徑修正率,且透過研究方法可提供不同幾何形狀與參數的顆粒得到等效直徑修正範圍。

    This article mainly uses the particle size ratio of green bean to explore the numerical simulation results of different particle parameters in the fluidized bed cold flow field. At the same time, it finds suitable particle collision parameters and discusses the impact of particle collision parameters on the fluidized bed. The fluidization behavior of geometric particles in a fluidized bed is difficult to predict. This study hopes to discuss non-spherical fluidization behavior with spherical particles. In the fluidized bed designed here, the flow of particles is simulated under the condition of a fixed Reynolds number. At the same time, the flow area is extended in order to make the boundary conditions conform to the physical phenomenon. The results of the numerical simulation use green bean particle density and particle diameter, and find a suitable. Finally, numerical analysis suitable result is used to combine multiple groups of different particle diameters and densities, and suitable particles. In this study, the geometric shape of green bean is used to obtain equal diameter correction rate, and the establishment of particles with different geometric shapes and parameters is provided through research methods. Effective diameter correction rate parameter range.

    目錄 摘要 I Extended Abstract II 致謝 V 目錄 VI 圖目錄 VIII 符號表 X 第一章、 緒論 1 1.1前言 1 1.2文獻回顧 5 1.2.1流體化床介紹 5 1.2.2偽二維流體化床實驗與數值分析模型 8 1.2.3計算流體力學離散元素法(Discrete Element Method, DEM) 9 1.3 本文架構 12 第二章、 理論分析 13 2.1 物理模型及基本假設 13 2.2 統御方程式 15 第三章、 實驗設備與步驟 23 3.1實驗系統 23 3.1.1工作流體動線 23 3.1.2實驗設備 24 3.2影像處理 25 3.3實驗步驟 26 第四章、 數值模擬方法 27 4.1數值模擬軟體簡介 27 4.1.1 ANSYS Workbench 27 4.1.2 ANSYS Fluent 27 4.1.3 EDEM 28 4.3流體化床之建模 30 4.3.1模型建立 30 4.3.2網格生成 32 4.4 FLUENT求解器與後處理 36 4.4.1求解器選擇 36 4.4.2收斂判斷 37 4.4.3後處理 38 第五章、 結果和討論 39 5.1獨立性驗證 39 5.1.1網格獨立性驗證 39 5.1.2 CFD-DEM模型驗證 41 5.1.3平均時間獨立性驗證 44 5.2 探討顆粒碰撞參數對系統影響並找出合適參數 45 5.3 入口截面積雷諾數與噴流高度之關係 51 5.4不同顆粒密度、顆粒直徑之關係 52 5.5實驗驗證模型 57 第六章、 結論與未來展望 60 參考文獻 61

    ANSYS FLUENT Theory Guide.(2011) Release 14.0,November
    ANSYS FLUENT User’s Guide(2011)Release 14.0,November
    Azmir, J., Hou, Q., & Yu, A. (2018). Discrete particle simulation of food grain drying in a fluidised bed. Powder Technology, 323, 238-249.
    Benyahia, S., & Galvin, J. E. (2010). Estimation of numerical errors related to some basic assumptions in discrete particle methods. Industrial & Engineering Chemistry Research, 49(21), 10588-10605.
    Chu, K. W., Wang, B., Xu, D. L., Chen, Y. X., & Yu, A. B. (2011). CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science, 66(5), 834-847.
    Computational fluid dynamic simulation of hydrodynamic behavior in a two-dimensional conical spouted bed. Energy & fuels, 24(11), 6086-6098.
    EDEM (2017) Theory Reference
    Frisullo, P. I. E. R. A. N. G. E. L. O., Barnabà, M., Navarini, L., & Del Nobile, M. A. (2012). Coffea arabica beans microstructural changes induced by roasting: An X-ray microtomographic investigation. Journal of food engineering, 108(1), 232-237.
    Hosseini, S. H., Ahmadi, G., Saeedi Razavi, B., & Zhong, W. (2010). Geldart, D. (1969). Fluidization Engineering: By D. Kunii and O. Levenspiel, John Wiley and Sons, Ltd., New York, 1969. 534 pp.; 220 illus. Price£ 6.12. 0
    Hou, Q. F., Zhou, Z. Y., & Yu, A. B. (2012). Computational study of heat transfer in a bubbling fluidized bed with a horizontal tube. AIChE journal, 58(5), 1422-1434.
    https://reurl.cc/z8dYXN
    Hu, C., Luo, K., Wang, S., Junjie, L., & Fan, J. (2019). The effects of collisional parameters on the hydrodynamics and heat transfer in spouted bed: A CFD-DEM study. Powder Technology, 353, 132-144.
    Jasion, G., Shrimpton, J., Danby, M., & Takeda, K. (2011). Performance of numerical integrators on tangential motion of DEM within implicit flow solvers. Computers & chemical engineering, 35(11), 2218-2226.
    Kafui, D. K., Johnson, S., Thornton, C., & Seville, J. P. K. (2011). Parallelization of a Lagrangian–Eulerian DEM/CFD code for application to fluidized beds. Powder Technology, 207(1-3), 270-278.
    Liu, G. Q., Li, S. Q., Zhao, X. L., & Yao, Q. (2008). Experimental studies of particle flow dynamics in a two-dimensional spouted bed. Chemical Engineering Science, 63(4), 1131-1141.
    Liu, D., Bu, C., & Chen, X. (2013). Development and test of CFD–DEM model for complex geometry: A coupling algorithm for Fluent and DEM. Computers & Chemical Engineering, 58, 260-268.
    Marchelli, F., Moliner, C., Bosio, B., & Arato, E. (2019). A CFD-DEM sensitivity analysis: The case of a pseudo-2D spouted bed. Powder Technology, 353, 409-425.
    Mahmoodi, B., Hosseini, S. H., & Ahmadi, G. (2019). CFD–DEM simulation of a pseudo-two-dimensional spouted bed comprising coarse particles. Particuology, 43, 171-180
    Moliner, C., Marchelli, F., Bosio, B., & Arato, E. (2017). Modelling of spouted and spout-fluid beds: Key for their successful scale up. Energies, 10(11), 1729.
    Sutkar, V. S., Deen, N. G., & Kuipers, J. A. M. (2013). Spout fluidized beds: Recent advances in experimental and numerical studies. Chemical engineering science, 86, 124-136.
    Stroh, A., Alobaid, F., Hasenzahl, M. T., Hilz, J., Ströhle, J., & Epple, B. (2016). Comparison of three different CFD methods for dense fluidized beds and validation by a cold flow experiment. Particuology, 29, 34-47.
    Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder technology, 71(3), 239-250.
    Geng, F., Li, Y., Wang, X., Yuan, Z., Yan, Y., & Luo, D. (2011). Simulation of dynamic processes on flexible filamentous particles in the transverse section of a rotary dryer and its
    Golshan, S., Zarghami, R., & Mostoufi, N. (2017). Hydrodynamics of slot-rectangular spouted beds: Process intensification. Chemical Engineering Research and Design, 121, 315-328.
    Ren, B., Zhong, W., Chen, Y., Chen, X., Jin, B., Yuan, Z., & Lu, Y. (2012). CFD-DEM simulation of spouting of corn-shaped particles. Particuology, 10(5), 562-572.
    Thanit, T., Wiwut, W., Tawatchai, T., Toshihiro, T., Toshitsugu, T., & Yutaka, Y. (2005). Prediction of gas-particle dynamics and heat transfer in a two-dimensional spouted bed. Advanced Powder Technology, 16(3), 275-293.
    Wang, Y., Wang, Y., & Ling, H. (2010). A new carrier gas type for accurate measurement of N 2 O by GC-ECD. Advances in atmospheric sciences, 27(6), 1322-1330.
    Oliveros, N. O., Hernández, J. A., Sierra-Espinosa, F. Z., Guardián-Tapia, R., & Pliego-Solórzano, R. (2017). Experimental study of dynamic porosity and its effects on simulation of the coffee beans roasting. Journal of Food Engineering, 199, 100-112.
    Philippsen, C. G., Vilela, A. C. F., & Dalla Zen, L. (2015). Fluidized bed modeling applied to the analysis of processes: review and state of the art. Journal of Materials Research and Technology, 4(2), 208-216.
    Zhao, X. L., Li, S. Q., Liu, G. Q., Song, Q., & Yao, Q. (2008). Flow patterns of solids in a two-dimensional spouted bed with draft plates: PIV measurement and DEM simulations. Powder Technology, 183(1), 79-87.
    Zhang, H., Liu, M., Li, T., Huang, Z., Sun, X., Bo, H., & Dong, Y. (2017). Experimental investigation on gas-solid hydrodynamics of coarse particles in a two-dimensional spouted bed. Powder Technology, 307, 175-183.
    Zhong, W., Xiong, Y., Yuan, Z., & Zhang, M. (2006). DEM simulation of gas–solid flow behaviors in spout-fluid bed. Chemical engineering science, 61(5), 1571-1584.
    鄭曉野.(2016).鼓泡流化床曳力模型及氣固流動特形數值研究.南京航空航天大學能源與動力學院學位論文
    賴宣儒.(2019).流化床甲烷乾重組產製合成氣之實驗探討.中興大學機械工程學系學位論文
    袁竹林,朱立平,.氣固兩相流動與數值模擬.東南大學出版社
    陳巨輝,王帥,等人.流化床技術模擬研究.科學出版社

    無法下載圖示 校內:2025-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE