| 研究生: |
黎維邦 Li, Wei-Bang |
|---|---|
| 論文名稱: |
在漢諾以圖形上的雙體與單體-雙體模型 Dimer coverings and dimer-monomer model on the Tower of Hanoi graph |
| 指導教授: |
張書銓
Chang, Shu-Chiuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 單體 、單體-雙體 |
| 外文關鍵詞: | Dimers, dimer-monomers, Tower of Hanoi graph, entropy, recursion relations, exact solution. |
| 相關次數: | 點閱:69 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文中,我們表示出了在n階漢諾以圖形上雙體數N_d (n)及單體-雙體數M_d (n),其中N_d (n)維度d=2、3、4、5,M_d (n)維度d=3、4。當漢諾以圖形的頂點個數,記做v(n),為偶數時N_d (n)為最密堆積,但當頂點個數為奇數時,N_d (n)不可能為最密堆積,並允許最外層之其中一個頂點不被雙體佔據。S_(〖TH〗_d )及z_(〖TH〗_d )之entropy分別定義為lim┬(n→∞)〖ln〖N_d (n)〗⁄(v(n))〗、lim┬(n→∞)〖ln〖M_d (n)〗⁄(v(n))〗,我們分別求得S_(〖TH〗_d )及z_(〖TH〗_d )之上、下界。當計算的階數增加時,上、下界差值的會收斂趨近於零,並且雙體數N_d (n)的entropy在三維和五維、單體-雙體數M_d (n)的entropy在三維和四維時,均可精確至小數點下百位以上。但雙體數N_d (n)的entropy在四維時僅精確到小數點下第六位數。
We present the number of dimer coverings N_d(n) and the number of dimer-monomers M_d(n) on the Tower of Hanoi graph TH_d(n) at stage n with dimension d equal to two, three, four and ve for N_d(n), and d equal to three and four for M_d(n). When the number of vertices, denoted as v(n), of the Tower of Hanoi graph is an even number, Nd(n) is the number of close-packed dimers. When the number of vertices is an odd number, no close-packed con gurations are possible and we allow one of the outmost vertices uncovered. The entropy of both S_TH_d and z_TH_d are, respectively, de ned as STHd = lim lnN_d(n)/v(n) and zTHd = lim lnM_d(n)/v. We get the upper bounds and the lower bounds for S_TH_d and z_TH_d , respectively. As the di erence between these bounds converges to zero as the calculated stage increases with d = 3; 5 for dimer coverings and with d = 3; 4 for dimer-monomers, the numerical value of both S_TH_d and z_TH_d can be evaluated with more than a hundred signi ficant fi gures accurate. But the dimer covering with d = 4 is merely evaluated with more than six signifi cant fi gures accurate.
[1] R. H. Fowler and G. S. Rushbrooke, An attempt to extend the statistical theory of
perfect solutions, Trans. Faraday. Soc. 33: 1272-1294 (1937).
[2] P. W. Kasteleyn, The statistics of dimers on a lattice: I. The number of dimer arrangements
on a quadratic lattice, Physica 27: 1209-1225 (1961).
[3] H. N. V. Temperley and M. E. Fisher, Dimer problem in statistical mechanics - An exact
result, Philos. Mag. 6: 1061-1063 (1961).
[4] M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev. 124: 1664-
1672 (1961).
[5] P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4: 287-293
(1963).
[6] M. E. Fisher, On dimer solution of planar Ising models, J. Math. Phys. 7: 1776-1781
(1966).
[7] M. Suzuki, Relationship among Exactly soluble Models of Critical Phenamena, Prog.
Thoer. Phys. 131: Vol. 46, No. 5 (1971)
[8] H. N. V. Temperley, Combinatorics (London Math. Soc. Lecture Note Series #13), T.
P. McDonough and V. C. Mavron, editors. (Cambridge University Press, Cambridge,
1974, pp 202-204).
[9] F. Y. Wu, Dimers on two-dimensional lattices, Int. J. Mod. Phys. B 20: 5357-5371
(2006).
[10] B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
[11] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd ed.
( Wiley, Chichester, 2003).
[12] H. Chen, R. Wu, G. Huang and H. Deng, Independent sets on the Towers of Hanoi
graphs, ARS Math. Contemp. 12: 247-260 (2017).
[13] Z. Z. Zhang, S. Q. Wu and M. Y. Li, The number and degree distribution os spanning
trees in the Tower of Hanoi graph, Theo. Com. Sci. 609: 443-455 (2016).
[14] H. Chen, R. Wu, G. Huang and H. Deng, Dimer-monomer model on the Towers of Hanoi
graphs, Int. J. Mod. Phys. B 29: 1550173 (2015).
[15] W.-J. Tzeng and F. Y. Wu, Dimers on a simple-quartic net with a vacancy, J. Stat.
Phys. 110: 671-689 (2003).
[16] F. Y.Wu, Pfa an solution of a dimer-monomer problem: Single monomer on the boundary,
Phys. Rev. E 74: 020104(R) (2006); F. Y. Wu, Erratum: Pfa an solution of a
dimer-monomer problem: Single monomer on the boundary, ibid. 74: 039907(E) (2006).
[17] W. T. Lu and F. Y. Wu, Dimer statistics on the Mobius strip and Klein bottle, Phys.
Lett. A 259: 108-114 (1999).
[18] N. Sh. Izmailian, K. B. Oganesyan and C. K. Hu, Exact nite-size corrections of the free
energy for the square lattice dimer model under di erent boundary conditions, Phys.
Rev. E 67: 066114 (2003).
[19] N. Sh. Izmailian, V. B. Priezzhev, P. Ruelle and C. K. Hu, Logarithmic Conformal Field
Theory and Boundary E ects in the Dimer Model, Phys. Rev. Lett. 95: 260602 (2005).
[20] W. G. Yan, Y.-N. Yeh and F. J. Zhang, On the Matching Polynomials of Graphs with
Small Number of Cycles of Even Length, Int. J. Quantum Chem. 105: 124-130 (2005).
[21] W. G. Yan and Y.-N. Yeh, On the number of matchings of graphs formed by a graph
operation, Science in China A: Math. 49: 1383-1391 (2006).
[22] Y. Kong, Packing dimers (2p + 1) (2q + 1) lattices , Phys. Rev. E 73: 016106 (2006).
[23] N. Sh. Izmailian, K. B. Oganesyan, M.-C. Wu and C. K. Hu, Finite-size corrections and
scaling for the triangular lattice dimer model with periodic boundary conditions, Phys.
Rev. E 73: 016128 (2006).
[24] Y. Kong, Logarithmic corrections in the free energy of monomer-dimer model on plane
lattices with free boundary, Phys. Rev. E 74: 011102 (2006).
[25] Y. Kong, Monomer-dimer model in two-dimension rectangular lattices with xed dimer
density, Phys. Rev. E 74: 061102 (2006).
[26] N. L. Biggs, Algebraic Graph Theory, 2nd ed. (Cambridge University Press, Cambridge,
1993).
[27] F. Harary, Graph Theory (Addison-Wesley, New York, 1969).
[28] R. Hilfer and A. Blumen, Renormalisation on Sierpinski-type fractals, J. Phys. A: Math.
Gen. 17: L537-L545 (1984).
[29] G. Misguich, D. Serban and V. Pasquier, Quantum dimer model with extensive groundstate
entropy on the kagome lattice, Phys. Rev. B 67: 214413 (2003).
[30] S.-C. Chang and L.-C. Chen, Dimer coverings on the Sierpinski gasket, J. Stat. Phys.
131: 631-650 (2008).
[31] Z. A. Melzak, Companion to Concrete Mathematics (John Wiley and Sons, New York,
1973, p. 65).
[32] J. F. Nagle, New series-expansion method for the dimer problem, Phys. Rev. 152: 190-
197 (1966).
[33] S.-C. Chang and L.-C. Chen, Dimer-monomer model on the Sierpinski gasket, Physica
A 387: 1551-1566 (2008).