| 研究生: |
王智宇 Wang, Chih-Yu |
|---|---|
| 論文名稱: |
以晶圓鍵合技術開發適用於異質與多晶向Ge/Si CFET製程平台 Development of Wafer Bonding Techniques for Integration of Heterogeneous and Different Orientation Ge/Si Channels in CFET Process |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 高載子遷移率通道 、互補式場效電晶體 |
| 外文關鍵詞: | high-mobility channel, complementary field-effect transistor(CFET) |
| 相關次數: | 點閱:40 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人工智慧與量子運算技術的迅速發展,對於低溫環境下穩定運作的電子元件的需求日益提升。為了同時實現高效能以及低功耗的目標,低溫操作之互補式場效電晶體(Cryogenic Complementary Field-Effect Transistor, cryo-CFET)被視為極具潛力之關鍵技術。鍺(Ge)憑藉其高載子遷移率與優異電性,適用於p型通道材料;而矽(Si)則因具備成熟製程基礎,持續於n型通道中扮演重要角色。
本論文實現異質通道之垂直堆疊Ge/Si CFET,採用Inversion Mode / Junctionless(IM/JL)結構,並透過低溫晶圓鍵合技術成功整合Ge與Si兩種材料於單一基板上。針對通道釋放製程中,由於濕蝕刻時間過長所導致之上層通道塌陷與下層通道未完全釋放問題,本文提出藉由增加鍵結氧化層厚度以提升通道穩定性之解決方案,有效改善元件結構完整性。本論文進一步地針對Ge pFET與Si nFET,分別改善閘極介電層介面品質、調整離子佈植的摻雜條件,並改良後續的活化製程,以降低接觸電阻並強化通道的導電能力。
本論文於300K、200 K、100 K、77 K及50 K等多種低溫條件下進行電性量測與分析。量測結果顯示,IM/JL Ge/Si CFET元件在低溫下於Ge PFET仍具備穩定的電流導通與關閉能力,且電流開關比( Ion/Ioff )隨著溫度的下降而有顯著的提升,此外,次臨界擺幅(Subthreshold Swing, SS)亦隨溫度下降而趨於陡峭,顯示閘極對通道的控制能力增強。然而,由於Junctionless結構對於摻雜均勻性與缺陷較為敏感,在Si NFET元件的表現受低溫影響的程度較大,尤其是在隨著溫度下降後出現的電流飽和現象。Ge PFET與Si NFET的臨界電壓(Vth)皆隨著溫度下降而出現偏移。
本論文結果顯示,Ge pFET具備良好的低溫操作潛力,適合作為低溫環境下穩定運作的電子元件選項,然而Si nFET於低溫下的導電行為仍需進一步製程優化,以提升整體CFET元件於低溫環境下的穩定性與可靠度。
With the rapid advancement of artificial intelligence and quantum computing technologies, the demand for electronic devices capable of stable operation under cryogenic environments has significantly increased. To simultaneously achieve high performance and low power consumption, cryogenic Complementary Field-Effect Transistors (cryo-CFETs) are considered a highly promising solution. Owing to its high carrier mobility and excellent electrical properties, germanium (Ge) is suitable as a p-type channel material, while silicon (Si) continues to play a vital role in n-type channels due to its well-established process maturity.
In this work, a vertically stacked Ge/Si CFET with heterogeneous channels is demonstrated, adopting an Inversion Mode/ Junctionless (IM/JL) architecture. Through low-temperature wafer bonding techniques, Ge and Si channels are successfully integrated onto a single substrate. During the channel release process, continued wet etching can result in upper channel collapse and incomplete release of the lower channel. To address this, we propose increasing the bonding oxide thickness to improve channel stability, effectively enhancing device structural integrity. Additionally, the Ge pFET and Si nFET are optimized by improving the gate dielectric interface quality, adjusting the ion implantation conditions, and improving the subsequent activation processes to reduce contact resistance and enhance channel conductivity.
Electrical characterizations were performed at various temperatures, including 300 K, 200 K, 100 K, 77 K, and 50 K. The results show that the IM/JL Ge/Si CFET exhibits stable on/off current switching in Ge pFETs under cryogenic conditions, with a notable improvement in the Ion/Ioff ratio as temperature decreases. Moreover, the subthreshold swing (S.S.) becomes steeper at lower temperatures, indicating enhanced gate control over the channel. However, due to the sensitivity of the junctionless structure to doping uniformity and defects, the Si nFET shows more obvious degradation at low temperatures, including current saturation behavior. Both Ge pFET and Si nFET exhibit threshold voltage (Vth) shifts as temperature decreases.
The results indicate that Ge pFETs have promising potential for low-temperature operation and are well-suited for cryogenic computing applications. Nonetheless, further process optimization is required to improve the conduction characteristics of Si nFETs under cryogenic conditions, thereby enhancing the overall stability and reliability of CFET devices in low-temperature environments.
[1] T. Z. Hong, W. H. Chang, A. Agarwal, Y. T. Huang, C. Y. Yang, T. Y. Chu, H. Y. Chao, Y. Chuang, S. T. Chung, J. H. Lin, S. M. Luo, C. J. Tsai, M. J. Li, X. R. Yu, N. C. Lin, T. C. Cho, P. J. Sung, C. J. Su, G. L. Luo, F. K. Hsueh, K. L. Lin, H. Ishii, T. Irisawa, T. Maeda, C. T. Wu, W. C. Y. Ma, D. D. Lu, K. H. Kao, Y. J. Lee, H. J. H. Chen, C. L. Lin, R. W. Chuang, K. P. Huang, S. Samukawa, Y. M. Li, J. H. Tarng, T. S. Chao, M. Miura, G. W. Huang, W. F. Wu, J. Y. Li, J. M. Shieh, Y. H. Wang, and W. K. Yeh, "First Demonstration of heterogenous Complementary FETs utilizing Low-Temperature (200 °C) Hetero-Layers Bonding Technique (LT-HBT)," in 2020 IEEE International Electron Devices Meeting (IEDM), 12-18 Dec. 2020 2020, pp. 15.5.1-15.5.4, doi: 10.1109/IEDM13553.2020.9372001.
[2] Q. Zhang, Y. Zhang, Y. Luo, and H. Yin, "New structure transistors for advanced technology node CMOS ICs," National Science Review, vol. 11, no. 3, p. nwae008, 2024, doi: 10.1093/nsr/nwae008.
[3] A. Toriumi, C. H. Lee, S. K. Wang, T. Tabata, M. Yoshida, D. D. Zhao, T. Nishimura, K. Kita, and K. Nagashio, "Material potential and scalability challenges of germanium CMOS," in 2011 International Electron Devices Meeting, 5-7 Dec. 2011 2011, pp. 28.4.1-28.4.4, doi: 10.1109/IEDM.2011.6131631.
[4] S. Takagi and M. Takenaka, "III–V/Ge MOSFETs and TFETs for ultra-low power logic LSIs," in 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 24-27 April 2017 2017, pp. 1-2, doi: 10.1109/VLSI-TSA.2017.7942467.
[5] S. Takagi, R. Zhang, J. Suh, S. Kim, M. Yokoyama, K. Nishi, and M. Takenaka, "III–V/Ge channel MOS device technologies in nano CMOS era," Japanese Journal of Applied Physics, vol. 54, p. 06FA01, 06/01 2015, doi: 10.7567/JJAP.54.06FA01.
[6] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, "Fermi-level pinning and charge neutrality level in germanium," Applied Physics Letters, vol. 89, no. 25, p. 252110, 2006, doi: 10.1063/1.2410241.
[7] Y. Kamata, "High-k/Ge MOSFETs for future nanoelectronics," Materials Today, vol. 11, no. 1, pp. 30-38, 2008/01/01/ 2008, doi: https://doi.org/10.1016/S1369-7021(07)70350-4.
[8] X. Ding, N. Wei, Y. Qu, Z. Lan, X. Yu, C. Yan, Z. Weng, S. Gao, T. Nishimura, L. Zhao, C. Lee, and Y. Zhao, "Fermi-Level Pinning Engineering for Achieving High-Performance Ge-Based Resistive Memory With Ultrahigh Self-Rectifying Ratio (> 105)," IEEE Transactions on Electron Devices, vol. 69, no. 12, pp. 6751-6756, 2022, doi: 10.1109/TED.2022.3211494.
[9] T. Nishimura, K. Kita, and A. Toriumi, "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface," Applied Physics Letters, vol. 91, no. 12, p. 123123, 2007, doi: 10.1063/1.2789701.
[10] H. Mertens, R. Ritzenthaler, V. Peña, G. Santoro, K. Kenis, A. Schulze, E. Litta, S. Chew, K. Devriendt, r. Chiarella, S. Demuynck, D. Yakimets, D. Jang, A. Spessot, G. Eneman, A. Dangol, P. Lagrain, H. Bender, S. Sun, and N. Horiguchi, Vertically stacked gate-all-around Si nanowire transistors: Key Process Optimizations and Ring Oscillator Demonstration. 2017, pp. 37.4.1-37.4.4.
[11] N. Loubet, T. B. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, and M. Khare, Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. 2017, pp. T230-T231.
[12] S. Kim, K. Lee, S. Kim, M. Kim, J. H. Lee, S. Kim, and B. G. Park, "Investigation of Device Performance for Fin Angle Optimization in FinFET and Gate-All-Around FETs for 3 nm-Node and Beyond," IEEE Transactions on Electron Devices, vol. 69, no. 4, pp. 2088-2093, 2022, doi: 10.1109/TED.2022.3154683.
[13] C.-W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J.-P. Colinge, "Performance estimation of junctionless multigate transistors," Solid-State Electronics, vol. 54, no. 2, pp. 97-103, 2010/02/01/ 2010, doi: https://doi.org/10.1016/j.sse.2009.12.003.
[14] C. H. Park, M. D. Ko, K. H. Kim, C. W. Sohn, C. K. Baek, Y. H. Jeong, and J. S. Lee, "Comparative study of fabricated junctionless and inversion-mode nanowire FETs," in 69th Device Research Conference, 20-22 June 2011 2011, pp. 179-180, doi: 10.1109/DRC.2011.5994478.
[15] M. K. Hudait, M. Clavel, P. Goley, N. Jain, and Y. Zhu, "Heterogeneous Integration of Epitaxial Ge on Si using AlAs/GaAs Buffer Architecture: Suitability for Low-power Fin Field-Effect Transistors," Scientific Reports, vol. 4, no. 1, p. 6964, 2014/11/07 2014, doi: 10.1038/srep06964.
[16] S. Chaurasia, S. Raghavan, and S. Avasthi, "Epitaxial germanium thin films on silicon (100) using two-step process," in 2016 3rd International Conference on Emerging Electronics (ICEE), 27-30 Dec. 2016 2016, pp. 1-4, doi: 10.1109/ICEmElec.2016.8074631.
[17] R. Winter, J. Ahn, P. C. McIntyre, and M. Eizenberg, "New method for determining flat-band voltage in high mobility semiconductors," Journal of Vacuum Science & Technology B, vol. 31, no. 3, 2013, doi: 10.1116/1.4802478.
[18] Naoto Horiguchi, Julien Ryckaert, “CFETs entering the logic technology scaling roadmap,” Imec, Jun. 2022.
校內:2030-07-27公開