簡易檢索 / 詳目顯示

研究生: 張馨云
Chang, Hsin-Yun
論文名稱: 低溫大氣電漿應用於茶葉殘留農藥降解及品質影響之探討
The effects of applying cold atmospheric plasma on pesticide degradation and the quality of tea leaves
指導教授: 陳秀玲
Chen, Hsiu-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 147
中文關鍵詞: 低溫大氣電漿茶葉農藥殘留茶葉品質製程介入
外文關鍵詞: Cold atmospheric plasma, Tea, Pesticide residues, Tea quality, Process intervention
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 茶葉中的農藥殘留為茶產業和消費者共同關切的議題。農藥的不當使用、未遵循作物採收期、環境污染及土壤吸收差異都是可能導致農藥殘留的原因。此外,各國對農藥殘留容許量(Maximum residue limits, MRL)的標準不一,且法規標準與時俱進,使茶葉在貿易中面臨許多挑戰,不僅造成茶葉的浪費,也提高了茶農的生產成本。然而,目前的研究主要關注茶乾和茶湯中的農藥問題,對於製茶過程中減少農藥殘留之研究仍顯不足。因此,如何在製茶過程中有效減少茶葉中農藥殘留並兼顧茶葉品質,已成為全球茶產業共同追求的目標。
    低溫大氣電漿(Cold atmospheric plasma, CAP)作為新興的非熱加工技術逐漸受到重視,由帶電粒子、自由基及活性物質所組成,可視為物質的第四態。研究已證實CAP在適當的作用條件下,不僅可以降低食品中的農藥殘留量,並維持食品品質及特性。然而,利用CAP降解茶葉中殘留農藥的研究尚未充分,如何應用並介入茶葉製程中也成為研究的重點目標。因此,本研究旨在了解現今茶葉中常見的農藥殘留類型,並應用CAP技術降解茶葉中的特定農藥,同時評估以CAP結合炒菁,探討其對茶葉品質的影響,以提供最佳的電漿作用參數及處理時機於茶葉製程中。
    本研究自茶廠的檢驗報告及市售茶葉全掃描分析結果,確定特定的農藥類型。接著,將CAP介入茶葉製程中探討特定農藥於噴灑及浸泡方法下的農藥降解情形,採用極致液相層析串聯式質譜儀(Ultraperformance Liquid Chromatography Tandem Mass Spectrometry, UPLC-MS/MS)進行定量分析,接續綜合農藥降解結果並運用響應曲面法(Response surface methodology, RSM)以找出建議之電漿參數。此外,以色差儀分析茶葉顏色的改變及評估CAP對茶葉品質的影響;總酚含量、總類黃酮含量及DPPH自由基清除能力使用紫外光分光光度計,芳香物質則使用氣相層析質譜儀(Gas Chromatography-Mass Spectrometry, GC-MS)分析。最終將綜合農藥降解結果以及茶葉品質試驗,並運用修正後RSM模型以建議理想的CAP作用參數。
    研究結果顯示,經由茶廠的檢驗報告及市售茶產品比對資料庫結果,挑選出益達胺(Imidacloprid)及百克敏(Pyraclostrobin)兩種農藥。前導實驗發現,使用微波爐模擬炒菁流程會有農藥再吸附的情形,因此後續的農藥實驗將移除微波爐,並探討以CAP結合或替代茶葉炒菁的可能性。在浸泡農藥的方法中,益達胺在21 kHz、500 W及5分鐘下降解44%;百克敏在噴灑農藥的方法中,於35 kHz、450 W及1分鐘降解至43%,且最終兩種農藥殘留量皆符合台灣及歐盟的法規需求。
    在茶葉品質試驗中,選擇具有顯著農藥降低的CAP參數以及RSM預測的最佳農藥降解參數進行測試。茶葉經由CAP處理後,其顏色呈現較高的亮度和綠度,尤其在21 kHz、500 W作用5分鐘後與市售茶葉顏色差異最小,但仍須留意高功率及長時間處理對顏色的影響。此外,經CAP處理後,可以觀察到總酚含量(Total phenolic content, TPC)和DPPH自由基清除能力的上升,推測CAP可以誘導抗氧化物質的生成並增加茶葉的抗氧化能力。而在總類黃酮(Total flavonoid content, TFC)的結果中,雖然沒有顯著的上升趨勢,但品質特性更接近市售的綠茶。在芳香物測試中,經不同CAP參數處理的茶葉產生不同的芳香物質,且在結果中觀察到許多重要的綠茶芳香物,包含己醛、反-2-己醛、2,6-二甲基-5-庚烯醛、檸檬烯、香葉醇、芳樟醇、芳樟醇氧化物及苯乙醇等。
    最後,根據RSM綜合農藥降解及品質測試的結果,推薦優化後的CAP作用參數(19 kHz、400 W處理5.41分鐘),本研究經實驗證實並測試的CAP參數可提供作為後續研究證實及茶廠應用,以改善目前茶葉中農藥殘留的問題,並提供新興方法應於製茶產業中。

    This study addresses the significant issue of pesticide residues in tea, a concern shared by the tea industry and consumers globally. The research aims to explore effective methods to reduce pesticide residues in tea while maintaining tea quality during the manufacturing process. Methods involved the identification of common pesticide residues in tea through inspection reports and analysis of commercial tea. Cold atmospheric plasma (CAP) technology was applied to degrade specific pesticides using both spraying and soaking methods. Quantitative analysis was conducted using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Response surface methodology (RSM) was employed to optimize CAP parameters. Results demonstrated that CAP effectively degraded pesticides in tea, with significant reductions achieved under optimized conditions. Both Imidacloprid and Pyraclostrobin residues met regulatory limits after CAP treatment, validating its efficacy in residue reduction without compromising tea quality. Colorimeter analysis indicated minimal color alteration post-treatment, while increased levels of Total phenolic content (TFC) and improved antioxidant properties were observed. In conclusion, integrating CAP into tea processing shows promise in mitigating pesticide residues effectively while enhancing tea quality attributes. This research provides practical recommendations for tea industry to adopt CAP as a sustainable solution to pesticide residue challenges, thereby advancing tea safety and quality assurance.

    縮寫表I 摘要III 誌謝VIII 目錄X 表目錄XIV 圖目錄XV 一、緒論1 1.1研究背景1 1.2研究目的3 二、文獻回顧4 2.1茶葉介紹4 2.1.1茶葉種類 4 2.1.2台灣茶葉進出口量及消費狀況5 2.1.3製茶關鍵及加工方法7 2.1.4茶葉重要成分及健康效益9 2.2茶葉中農藥殘留及規範11 2.2.1農藥分類及特性11 2.2.2農藥對人體及環境之危害14 2.2.3茶葉中農藥殘留議題15 2.3食品中農藥殘留之降解方法23 2.3.1傳統熱加工技術23 2.3.2新興非熱加工技術24 2.3.3茶葉中農藥殘留的去除26 2.4電漿簡介及應用27 2.4.1電漿27 2.4.2低溫大氣電漿(CAP)28 2.4.3電漿活化水30 2.4.4電漿技術於食品安全之應用32 2.5低溫大氣電漿技術與農藥的相關研究37 2.6低溫大氣電漿技術對於食品品質的影響43 2.7低溫大氣電漿於茶葉之應用43 2.8研究重要性44 三、材料與方法45 3.1研究設計45 3.2儀器設備及試劑46 3.3特定農藥篩選47 3.3.1茶廠檢驗報告調查47 3.3.2市售茶葉農藥全掃描分析49 3.4樣本前處理52 3.4.1 茶葉52 3.4.2 農藥水溶液52 3.5低溫大氣電漿實驗53 3.5.1低溫大氣電漿參數測試53 3.5.2低溫大氣電漿介入茶葉製程54 3.6農藥殘留量分析55 3.6.1儀器參數55 3.6.2品保與品管(QA/QC)56 3.6.3農藥降解效率58 3.7響應曲面法之電漿參數最佳化58 3.8茶葉品質分析59 3.8.1顏色參數及色差59 3.8.2抗氧化物質及能力59 3.8.3芳香物質測定61 3.9統計分析61 四、結果與討論62 4.1特定農藥選擇62 4.2前導試驗評估64 4.2.1茶葉中農藥降解初步測試64 4.2.2農藥水溶液降解評估65 4.2.3以微波爐模擬茶葉炒菁之影響66 4.3低溫大氣電漿於茶葉中農藥殘留之影響67 4.3.1以浸泡方法添加農藥於茶菁中67 4.3.2以噴灑方法添加農藥於茶菁中69 4.3.3最佳化農藥降解參數72 4.3.4低溫大氣電漿光譜組成分析74 4.4低溫大氣電漿於茶葉品質的影響76 4.4.1顏色參數及色差76 4.4.2總酚含量(TPC)80 4.4.3總類黃酮含量(TFC)82 4.4.4DPPH自由基清除能力測試84 4.4.5芳香物質分析86 4.5農藥降解及品質影響之綜合評估92 4.5.1響應曲面法推薦之CAP參數92 4.5.2現有研究結果推薦之CAP參數97 五、結論99 六、研究限制及建議101 七、參考文獻102 附錄1:最佳CAP參數下農藥降解、顏色差異、抗氧化物質及能力的綜合結果121 附錄2:不同CAP處理下的芳香物質變化122 附錄3:最佳CAP參數下的茶葉外觀及溫度128

    Abalo, R. (2021). Coffee and Caffeine Consumption for Human Health. Nutrients, 13(9). https://doi.org/10.3390/nu13092918
    Ahangari, M., Ramezan, Y., & Khani, M. R. (2020). Effect of low pressure cold plasma treatment on microbial decontamination and physicochemical properties of dried walnut kernels (Juglans regia L.). Journal of Food Process Engineering, 44, e13593. https://doi.org/10.1111/jfpe.13593
    Akar, Z., Küçük, M., & Doğan, H. (2017). A new colorimetric DPPH(•) scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 640-647. https://doi.org/10.1080/14756366.2017.1284068
    Ali, M., Cheng, J.-H., & Sun, D.-W. (2021). Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice. International Journal of Food Science & Technology, 56(1), 69-75. https://doi.org/https://doi.org/10.1111/ijfs.14600
    Ali, M., Sun, D.-W., Cheng, J.-H., & Johnson Esua, O. (2022). Effects of combined treatment of plasma activated liquid and ultrasound for degradation of chlorothalonil fungicide residues in tomato. Food Chemistry, 371, 131162. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.131162
    Ali, S., Ullah, M. I., Sajjad, A., Shakeel, Q., & Hussain, A. (2021). Environmental and Health Effects of Pesticide Residues. In Inamuddin, M. I. Ahamed, & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 48: Pesticide Occurrence, Analysis and Remediation Vol. 2 Analysis (pp. 311-336). Springer International Publishing. https://doi.org/10.1007/978-3-030-54719-6_8
    Allai, F. M., Azad, Z. R. A. A., Mir, N. A., & Gul, K. (2023). Recent advances in non-thermal processing technologies for enhancing shelf life and improving food safety. Applied Food Research, 3(1), 100258. https://doi.org/https://doi.org/10.1016/j.afres.2022.100258
    Alluhayb, A. H., & Logue, B. A. (2017). The analysis of aroma/flavor compounds in green tea using ice concentration linked with extractive stirrer. Journal of Chromatography A, 1518, 8-14. https://doi.org/10.1016/j.chroma.2017.08.049
    Amini, M., & Ghorannevi, M. (2016). Black and Green Tea Decontamination by Cold Plasma. Research Journal of Microbiology, 11, 42-46. https://doi.org/10.3923/jm.2016.42.46
    Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT, 73, 178-184. https://doi.org/https://doi.org/10.1016/j.lwt.2016.06.014
    Amir, R. M., Randhawa, M. A., Nadeem, M., Ahmed, A., Ahmad, A., Khan, M. R., Khan, M. A., & Kausar, R. (2019). Assessing and Reporting Household Chemicals as a Novel Tool to Mitigate Pesticide Residues in Spinach (Spinacia oleracea). Scientific Reports, 9(1), 1125. https://doi.org/10.1038/s41598-018-37936-2
    Anbarasan, R., Jaspin, S., Bhavadharini, B., Pare, A., Pandiselvam, R., & Mahendran, R. (2022). Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone treatments. LWT, 159, 113193. https://doi.org/https://doi.org/10.1016/j.lwt.2022.113193
    Ansari, I., El-Kady, M., Arora, C., Muniyan, S., Maiti, D., & Khan, A. (2021). Global Climate Change Global Climate Change A review on the fatal impact of pesticide toxicity on environment and human health 16. In (pp. 361-383).
    Arcega, R. D., Hou, C.-Y., Hsu, S.-C., Lin, C.-M., Chang, W.-H., & Chen, H.-L. (2022). Reduction of pesticide residues in Chrysanthemum morifolium by nonthermal plasma-activated water and impact on its quality. Journal of Hazardous Materials, 434, 128610. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.128610
    Awang, N., Januddi, M. A.-F. M. S., Yajid, M. A. M., Zulkifli, I. S., Arshad, A., & Daroonparvar, M. (2022). Experimental Investigation and Optimization of Process Parameters of As-Sprayed Aerogel-Soda Lime Glass/NiCoCrAlYTa Coating with Historical Data Design Response Surface Methodology (RSM). In A. Ismail, M. A. Mohd Daril, & A. Öchsner (Eds.), Advanced Transdisciplinary Engineering and Technology (pp. 297-308). Springer International Publishing. https://doi.org/10.1007/978-3-031-01488-8_25
    Bag, S., Mondal, A., Majumder, A., & Banik, A. (2022). Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chemistry, 371, 131098. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.131098
    Bao, T., Hao, X., Shishir, M. R. I., Karim, N., & Chen, W. (2021). Cold plasma: An emerging pretreatment technology for the drying of jujube slices. Food Chemistry, 337, 127783. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.127783
    Bezerra, J. d. A., Lamarão, C. V., Sanches, E. A., Rodrigues, S., Fernandes, F. A. N., Ramos, G. L. P. A., Esmerino, E. A., Cruz, A. G., & Campelo, P. H. (2023). Cold plasma as a pre-treatment for processing improvement in food: A review. Food Research International, 167, 112663. https://doi.org/https://doi.org/10.1016/j.foodres.2023.112663
    Bibi Sadeer, N., Montesano, D., Albrizio, S., Zengin, G., & Mahomoodally, M. F. (2020). The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants, 9(8).
    Bora, J., Khan, T., & Mahnot, N. K. (2022). Cold plasma treatment concerning quality and safety of food: A review. Current Research in Nutrition and Food Science Journal, 10(2), 427-446.
    Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6), 615-626. https://doi.org/https://doi.org/10.1016/j.tibtech.2017.11.001
    Bursać Kovačević, D., Gajdoš Kljusurić, J., Putnik, P., Vukušić, T., Herceg, Z., & Dragović-Uzelac, V. (2016). Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry, 212, 323-331. https://doi.org/https://doi.org/10.1016/j.foodchem.2016.05.192
    Cengiz, M. F., & Certel, M. (2012). Decontamination Techniques of Pesticide Residues before Food. Academic Food Journal, 10, 69-74.
    Chan, E. W. C., Lim, Y. Y., & Chew, Y. L. (2007). Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chemistry, 102(4), 1214-1222. https://doi.org/https://doi.org/10.1016/j.foodchem.2006.07.009
    Chen, H., Liu, Y., Zhang, X., Chu, J., Pu, S., Wang, W., Wen, S., Jiang, R., Ouyang, J., Xiong, L., Huang, J., & Liu, Z. (2024). “Age” of tea: The impact of long-term storage on the aroma of Tuo tea and age prediction. Food Research International, 187, 114316. https://doi.org/https://doi.org/10.1016/j.foodres.2024.114316
    Chen, H., Zhang, X., Jiang, R., Ouyang, J., Liu, Q., Li, J., Wen, H., Li, Q., Chen, J., Xiong, L., Huang, J., & Liu, Z. (2023). Characterization of aroma differences on three drying treatments in Rucheng Baimao (Camellia pubescens) white tea. LWT, 179, 114659. https://doi.org/https://doi.org/10.1016/j.lwt.2023.114659
    Chen, J., Yang, C., Yuan, C., Li, Y., An, T., & Dong, C. (2022). Moisture content monitoring in withering leaves during black tea processing based on electronic eye and near infrared spectroscopy. Scientific Reports, 12(1), 20721. https://doi.org/10.1038/s41598-022-25112-6
    Chen, P. A., Liu, C. I., & Chen, K. R. (2023). Determining the Relationship between Aroma and Quality of Bao-Chung Tea by Solid-Phase Microextraction (SPME) and Electronic Nose Analyses. Horticulturae, 9(8), 930. https://www.mdpi.com/2311-7524/9/8/930
    Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. Applied Sciences, 12(4).
    Choi, M.-S., Jeon, E. B., Kim, J. Y., Choi, E. H., Lim, J. S., Choi, J., & Park, S. Y. (2022). Application of dielectric barrier discharge plasma for the reduction of non-pathogenic Escherichia coli and E. coli O157:H7 and the quality stability of fresh oysters (Crassostrea gigas). LWT, 154, 112698. https://doi.org/https://doi.org/10.1016/j.lwt.2021.112698
    Choi, Y.-H., Kim, J.-H., Paek, K.-H., Ju, W.-T., & Hwang, Y. S. (2005). Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification. Surface and Coatings Technology, 193(1), 319-324. https://doi.org/https://doi.org/10.1016/j.surfcoat.2004.08.145
    Chua, L., Bee Lin, C., Figiel, A., Chong, C. H., Wojdyło, A., & Łyczko, J. (2019). Drying of Phyla nodiflora Leaves: Antioxidant Activity, Volatile and Phytosterol Content, Energy Consumption, and Quality Studies. Processes, 7, 210. https://doi.org/10.3390/pr7040210
    Cong, L., Huang, M., Zhang, J., & Yan, W. (2021). Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce. Journal of the Science of Food and Agriculture, 101(2), 424-432. https://doi.org/10.1002/jsfa.10651
    Çoruhlu, T., Senturk, K., Akkaya, E., & Şen, T. (2021). Effects of Cold Plasma Treatment on Seed Germination and Seedling Growth of Turkish Tea.
    Domonkos, M., Tichá, P., Trejbal, J., & Demo, P. (2021a). Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Applied Sciences, 11(11).
    Domonkos, M., Tichá, P., Trejbal, J., & Demo, P. (2021b). Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Applied Sciences, 11(11), 4809. https://www.mdpi.com/2076-3417/11/11/4809
    Dorraki, N., Mahdavi, V., Ghomi, H., & Ghasempour, A. (2016). Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma. Biointerphases, 11(4), 041007. https://doi.org/10.1116/1.4971382
    Dwyer, J. T., & Peterson, J. (2013). Tea and flavonoids: where we are, where to go next. American Journal of Clinical Nutrition, 98(6 Suppl), 1611s-1618s. https://doi.org/10.3945/ajcn.113.059584
    European Food Safety, A. (2016). Peer review of the pesticide risk assessment for the active substance clothianidin in light of confirmatory data submitted. EFSA Journal, 14(11), e04606. https://doi.org/https://doi.org/10.2903/j.efsa.2016.4606
    Farooq, S., Dar, A. H., Dash, K. K., Srivastava, S., Pandey, V. K., Ayoub, W. S., Pandiselvam, R., Manzoor, S., & Kaur, M. (2023). Cold plasma treatment advancements in food processing and impact on the physiochemical characteristics of food products. Food Science and Biotechnology, 32(5), 621-638. https://doi.org/10.1007/s10068-023-01266-5
    Figueroa-Pinochet, M. F., Castro-Alija, M. J., Tiwari, B. K., Jiménez, J. M., López-Vallecillo, M., Cao, M. J., & Albertos, I. (2022). Dielectric Barrier Discharge for Solid Food Applications. Nutrients, 14(21), 4653. https://www.mdpi.com/2072-6643/14/21/4653
    Francisco, S. n.-B., Henk, A. T., & Koichi, G. (2013). Impact of Systemic Insecticides on Organisms and Ecosystems. In T. Stanislav (Ed.), Insecticides (pp. Ch. 13). IntechOpen. https://doi.org/10.5772/52831
    Fukuda, S., Sakurai, Y., & Izawa, S. (2023). Detoxification of the post-harvest antifungal pesticide thiabendazole by cold atmospheric plasma. Journal of Bioscience and Bioengineering, 136(2), 123-128. https://doi.org/https://doi.org/10.1016/j.jbiosc.2023.05.004
    Gan, Z., Feng, X., Hou, Y., Sun, A., & Wang, R. (2021). Cold plasma jet with dielectric barrier configuration: Investigating its effect on the cell membrane of E. coli and S. cerevisiae and its impact on the quality of chokeberry juice. LWT, 136, 110223. https://doi.org/https://doi.org/10.1016/j.lwt.2020.110223
    Gao, W., Yan, M., Xiao, Y., Lv, Y., Peng, C., Wan, X., & Hou, R. (2019). Rinsing Tea before Brewing Decreases Pesticide Residues in Tea Infusion. Journal of Agricultural and Food Chemistry, 67(19), 5384-5393. https://doi.org/10.1021/acs.jafc.8b04908
    GaotonMedical. (2024). Plasma basics. http://gaotontech.com/plasma-basics/
    Gavahian, M., & Khaneghah, A. M. (2020). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60(9), 1581-1592. https://doi.org/10.1080/10408398.2019.1584600
    Gavahian, M., Sarangapani, C., & Misra, N. N. (2021). Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies. Food Research International, 141, 110138. https://doi.org/https://doi.org/10.1016/j.foodres.2021.110138
    Gonçalves Bortolini, Charles Windson Isidoro Haminiuk, Alessandra Cristina Pedro, Isabela de Andrade Arruda Fernandes, & Maciel, G. M. (2021). Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chemistry: X, 12, 100160. https://doi.org/https://doi.org/10.1016/j.fochx.2021.100160
    Gramza-Michałowska, A. (2014). Caffeine in tea Camellia sinensis — Content, absorption, benefits and risks of consumption. The Journal of nutrition, health and aging, 18(2), 143-149. https://doi.org/https://doi.org/10.1007/s12603-013-0404-1
    Grzegorzewski, F., Ehlbeck, J., Schlüter, O., Kroh, L. W., & Rohn, S. (2011). Treating lamb’s lettuce with a cold plasma – Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT - Food Science and Technology, 44(10), 2285-2289. https://doi.org/https://doi.org/10.1016/j.lwt.2011.05.004
    Guragain, R. P., Pradhan, S. P., Baniya, H. B., Pandey, B. P., Basnet, N., Sedhai, B., Dhungana, S., Chhetri, G. K., Joshi, U. M., & Subedi, D. P. (2021). Impact of Plasma-Activated Water (PAW) on Seed Germination of Soybean. Journal of Chemistry, 2021, 7517052. https://doi.org/10.1155/2021/7517052
    Hadiyat, M. A., Sopha, B. M., & Wibowo, B. S. (2022). Response Surface Methodology Using Observational Data: A Systematic Literature Review. Applied Sciences, 12(20), 10663. https://www.mdpi.com/2076-3417/12/20/10663
    Haertel, B., von Woedtke, T., Weltmann, K. D., & Lindequist, U. (2014). Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomolecules & Therapeutics, 22(6), 477-490. https://doi.org/10.4062/biomolther.2014.105
    Han, Z. X., Rana, M. M., Liu, G. F., Gao, M. J., Li, D. X., Wu, F. G., Li, X. B., Wan, X. C., & Wei, S. (2017). Data on green tea flavor determinantes as affected by cultivars and manufacturing processes. Data Brief, 10, 492-498. https://doi.org/10.1016/j.dib.2016.12.025
    Harikrishna, S., Anil, P. P., Shams, R., & Dash, K. K. (2023). Cold plasma as an emerging nonthermal technology for food processing: A comprehensive review. Journal of Agriculture and Food Research, 14, 100747. https://doi.org/https://doi.org/10.1016/j.jafr.2023.100747
    He, Y., Li, J., Mei, H., Zhuang, J., Zhao, Z., Jeyaraj, A., Wang, Y., Chen, X., Li, X., & Liu, Z. (2023). Effects of leaf-spreading on the volatile aroma components of green tea under red light of different intensities. Food Research International, 168, 112759. https://doi.org/https://doi.org/10.1016/j.foodres.2023.112759
    Hemmati, V., Garavand, F., Khorshidian, N., Cacciotti, I., Goudarzi, M., Chaichi, M., & Tiwari, B. K. (2021). Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder. Food Bioscience, 44, 101348. https://doi.org/https://doi.org/10.1016/j.fbio.2021.101348
    Herianto, S., Arcega, R. D., Hou, C.-Y., Chao, H.-R., Lee, C.-C., Lin, C.-M., Mahmudiono, T., & Chen, H.-L. (2023). Chemical decontamination of foods using non-thermal plasma-activated water. Science of the Total Environment, 874, 162235. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162235
    Ho, C.-T., Zheng, X., & Li, S. (2015). Tea aroma formation. Food Science and Human Wellness, 4(1), 9-27. https://doi.org/https://doi.org/10.1016/j.fshw.2015.04.001
    Hou, C.-Y., Lai, Y.-C., Hsiao, C.-P., Chen, S.-Y., Liu, C.-T., Wu, J.-S., & Lin, C.-M. (2021). Antibacterial activity and the physicochemical characteristics of plasma activated water on tomato surfaces. LWT, 149, 111879. https://doi.org/https://doi.org/10.1016/j.lwt.2021.111879
    Hu, W., Wang, G., Lin, S., Liu, Z., Wang, P., Li, J., Zhang, Q., & He, H. (2022). Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types—Based on OAV-Splitting Method. Foods, 11(15), 2204. https://www.mdpi.com/2304-8158/11/15/2204
    Iizuka, T., Maeda, S., & Shimizu, A. (2013). Removal of pesticide residue in cherry tomato by hydrostatic pressure. Journal of Food Engineering, 116(4), 796-800. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2013.01.035
    Illera, A. E., Chaple, S., Sanz, M. T., Ng, S., Lu, P., Jones, J., Carey, E., & Bourke, P. (2019). Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chemistry: X, 3, 100049. https://doi.org/https://doi.org/10.1016/j.fochx.2019.100049
    Isemura, M. (2019). Catechin in Human Health and Disease. Molecules, 24(3). https://doi.org/10.3390/molecules24030528
    Jeirani, Z., Mohamed Jan, B., Si Ali, B., Noor, I. M., See, C. H., & Saphanuchart, W. (2013). Prediction of the optimum aqueous phase composition of a triglyceride microemulsion using response surface methodology. Journal of Industrial and Engineering Chemistry, 19(4), 1304-1309. https://doi.org/https://doi.org/10.1016/j.jiec.2012.12.032
    Jiang, H., Lin, Q., Shi, W., Yu, X., & Wang, S. (2022). Food preservation by cold plasma from dielectric barrier discharges in agri-food industries [Review]. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1015980
    Kalogiouri, N. P., Papadakis, E.-N., Maggalou, M. G., Karaoglanidis, G. S., Samanidou, V. F., & Menkissoglu-Spiroudi, U. (2021). Development of a Microwave-Assisted Extraction Protocol for the Simultaneous Determination of Mycotoxins and Pesticide Residues in Apples by LC-MS/MS. Applied Sciences, 11(22), 10931. https://www.mdpi.com/2076-3417/11/22/10931
    Kalyabina, V. P., Esimbekova, E. N., Kopylova, K. V., & Kratasyuk, V. A. (2021). Pesticides: formulants, distribution pathways and effects on human health – a review. Toxicology Reports, 8, 1179-1192. https://doi.org/https://doi.org/10.1016/j.toxrep.2021.06.004
    Keshavarzi, M., Najafi, G., Ahmadi Gavlighi, H., Seyfi, P., & Ghomi, H. (2020). Enhancement of polyphenolic content extraction rate with maximal antioxidant activity from green tea leaves by cold plasma. Journal of Food Science, 85(10), 3415-3422. https://doi.org/10.1111/1750-3841.15448
    Khan, M. A., Ahmad, R., & Srivastava, A. N. (2016). Effect of methyl butyrate aroma on the survival and viability of human breast cancer cells in vitro. Journal of the Egyptian National Cancer Institute, 28(2), 81-88. https://doi.org/10.1016/j.jnci.2016.02.005
    Khan, N., & Mukhtar, H. (2019). Tea Polyphenols in Promotion of Human Health. Nutrients, 11(1).
    Khumsupan, D., Lin, S.-P., Hsieh, C.-W., Santoso, S. P., Chou, Y.-J., Hsieh, K.-C., Lin, H.-W., Ting, Y., & Cheng, K.-C. (2023). Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules, 28(13).
    Kim, E. S., Liang, Y. R., Jin, J., Sun, Q. F., Lu, J. L., Du, Y. Y., & Lin, C. (2007). Impact of heating on chemical compositions of green tea liquor. Food Chemistry, 103(4), 1263-1267. https://doi.org/https://doi.org/10.1016/j.foodchem.2006.10.031
    Kimutai, G., Ngenzi, A., Said, R. N., Kiprop, A., & Förster, A. (2020). An Optimum Tea Fermentation Detection Model Based on Deep Convolutional Neural Networks. Data, 5(2), 44. https://www.mdpi.com/2306-5729/5/2/44
    Kochman, J., Jakubczyk, K., Antoniewicz, J., Mruk, H., & Janda, K. (2021). Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules, 26(1).
    Kungsuwan, K., Sawangrat, C., Ounjaijean, S., Chaipoot, S., Phongphisutthinant, R., & Wiriyacharee, P. (2023). Enhancing Bioactivity and Conjugation in Green Coffee Bean (Coffea arabica) Extract through Cold Plasma Treatment: Insights into Antioxidant Activity and Phenolic–Protein Conjugates. Molecules, 28(20).
    Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B., & Carciofi, B. A. M. (2022). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312, 110748. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2021.110748
    Lee, J., Chambers, D. H., Chambers, E., Adhikari, K., & Yoon, Y. (2013). Volatile aroma compounds in various brewed green teas. Molecules, 18(8), 10024-10041. https://doi.org/10.3390/molecules180810024
    Li, B., Peng, L., Cao, Y., Liu, S., Zhu, Y., Dou, J., Yang, Z., & Zhou, C. (2024). Insights into Cold Plasma Treatment on the Cereal and Legume Proteins Modification: Principle, Mechanism, and Application. Foods, 13(10), 1522. https://www.mdpi.com/2304-8158/13/10/1522
    Li, G., Zhang, X., Liu, T., Fan, H., Liu, H., Li, S., Wang, D., & Ding, L. (2021). Dynamic microwave-assisted extraction combined with liquid phase microextraction based on the solidification of a floating drop for the analysis of organochlorine pesticides in grains followed by GC. Food Science and Human Wellness, 10(3), 375-382. https://doi.org/https://doi.org/10.1016/j.fshw.2021.02.029
    Li, M., Huang, X., & Xiong, Z. (2022). Investigation of stimulated growth effect using pulsed cold atmospheric plasma treatment on Ganoderma lucidum. Plasma Science and Technology, 24(11), 115503. https://doi.org/10.1088/2058-6272/ac78cd
    Li, M., Li, X., Han, C., Ji, N., Jin, P., & Zheng, Y. (2019). Physiological and Metabolomic Analysis of Cold Plasma Treated Fresh-Cut Strawberries. Journal of Agricultural and Food Chemistry, 67(14), 4043-4053. https://doi.org/10.1021/acs.jafc.9b00656
    Li, M. Y., Liu, H. Y., Wu, D. T., Ahmad Kenaan, Fang Geng, Li, H. B., Anil Gunaratne, Li, H., & Gan, R. Y. (2022). L-Theanine: A Unique Functional Amino Acid in Tea (Camellia sinensis L.) With Multiple Health Benefits and Food Applications [Review]. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.853846
    Li, Y., Ran, W., He, C., Zhou, J., Chen, Y., Yu, Z., & Ni, D. (2022). Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea. Food Chemistry: X, 14, 100289. https://doi.org/https://doi.org/10.1016/j.fochx.2022.100289
    Liao, X., Su, Y., Liu, D., Chen, S., Hu, Y., Ye, X., Wang, J., & Ding, T. (2018). Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control, 94, 307-314. https://doi.org/https://doi.org/10.1016/j.foodcont.2018.07.026
    Lin, Q., Huang, Y., Li, G., Luo, Z., Wang, L., Li, D., Xiang, Y., Liu, L., Ban, Z., & Li, L. (2023). The journey of prochloraz pesticide in Citrus sinensis: Residual distribution, impact on transcriptomic profiling and reduction by plasma-activated water. Journal of Hazardous Materials, 448, 130931. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.130931
    Lin, S.-Y., Hsiao, Y.-H., & Chen, P.-A. (2022). Revealing the profound meaning of pan-firing of oolong tea – A decisive point in odor fate. Food Chemistry, 375, 131649. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.131649
    Liu, Hongxia, Guo, Dingmeng, Feng, & Xinxin. (2021). Plasma Degradation of Pesticides on the Surface of Corn and Evaluation of Its Quality Changes. Sustainability, 13(16), 8830. https://www.mdpi.com/2071-1050/13/16/8830
    Liu, H., Guo, D., & Feng, X. (2021). Plasma Degradation of Pesticides on the Surface of Corn and Evaluation of Its Quality Changes. Sustainability, 13(16), 8830. https://www.mdpi.com/2071-1050/13/16/8830
    Liu, K., Chen, Q., Luo, H., Li, R., Chen, L., Jiang, B., Liang, Z., Wang, T., Ma, Y., & Zhao, M. (2023). An In Vitro Catalysis of Tea Polyphenols by Polyphenol Oxidase. Molecules, 28(4).
    Liu, Z.-W., Liu, L.-J., Zhou, Y.-X., Tan, Y.-C., Cheng, J.-H., Bekhit, A. E.-D., Inam-Ur-Raheem, M., & Aadil, R. M. (2021). Dielectric-barrier discharge (DBD) plasma treatment reduces IgG binding capacity of β-lactoglobulin by inducing structural changes. Food Chemistry, 358, 129821. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129821
    Lu, E.-H., Huang, S.-Z., Yu, T.-H., Chiang, S.-Y., & Wu, K.-Y. (2020). Systematic probabilistic risk assessment of pesticide residues in tea leaves. Chemosphere, 247, 125692. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125692
    Lu, J., Zhang, Z., Lin, X., Chen, Z., Li, B., & Zhang, Y. (2022). Removal of imidacloprid and acetamiprid in tea (Camellia sinensis) infusion by activated carbon and determination by HPLC. Food Control, 131, 108395. https://doi.org/https://doi.org/10.1016/j.foodcont.2021.108395
    Luo, J., Xu, W., Liu, Q., Zou, Y., Wang, D., & Zhang, J. (2022). Dielectric barrier discharge cold plasma treatment of pork loin: Effects on muscle physicochemical properties and emulsifying properties of pork myofibrillar protein. LWT, 162, 113484. https://doi.org/https://doi.org/10.1016/j.lwt.2022.113484
    Ly, T.-K., Behra, P., & Nhu-Trang, T.-T. (2022). Quantification of 397 pesticide residues in different types of commercial teas: Validation of high accuracy methods and quality assessment. Food Chemistry, 370, 130986. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.130986
    Mai-Prochnow, A., Zhou, R., Zhang, T., Ostrikov, K., Mugunthan, S., Rice, S. A., & Cullen, P. J. (2021). Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action. npj Biofilms and Microbiomes, 7(1), 11. https://doi.org/10.1038/s41522-020-00180-6
    Mandal, R., Singh, A., & Pratap Singh, A. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology, 80, 93-103. https://doi.org/https://doi.org/10.1016/j.tifs.2018.07.014
    Maryam Amini, M. G. (2016). Black and green tea decontamination by cold plasma. Research Journal of Microbiology, 11(1), 42.
    Mehta, D., Sharma, N., Bansal, V., Sangwan, R. S., & Yadav, S. K. (2019). Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing. Innovative Food Science & Emerging Technologies, 52, 343-349. https://doi.org/https://doi.org/10.1016/j.ifset.2019.01.015
    Mir, S. A., Dar, B. N., Mir, M. M., Sofi, S. A., Shah, M. A., Sidiq, T., Sunooj, K. V., Hamdani, A. M., & Mousavi Khaneghah, A. (2022). Current strategies for the reduction of pesticide residues in food products. Journal of Food Composition and Analysis, 106, 104274. https://doi.org/https://doi.org/10.1016/j.jfca.2021.104274
    Misra, N., Pankaj, S., Frias, J., Keener, K., & Cullen, P. (2015). The effects of nonthermal plasma on chemical quality of strawberries. Postharvest Biology and Technology, 110, 197-202.
    Munekata, P. E. S., Domínguez, R., Pateiro, M., & Lorenzo, J. M. (2020). Influence of Plasma Treatment on the Polyphenols of Food Products-A Review. Foods, 9(7). https://doi.org/10.3390/foods9070929
    Nguyen, T., Palmer, J., Phan, N., Shi, H., Keener, K., & Flint, S. (2022). Control of aflatoxin M1 in skim milk by high voltage atmospheric cold plasma. Food Chemistry, 386, 132814. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.132814
    Ni, J.-B., Jia, X.-F., Zhang, J.-Y., Ding, C.-J., Tian, W.-L., Peng, W.-J., Zielinska, S., Xiao, H.-W., & Fang, X.-M. (2024). Efficient degradation of imidacloprid by surface discharge cold plasma: Mechanism of interaction between ROS and molecular structure and evaluation of residual toxicity. Journal of Hazardous Materials, 465, 133066. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.133066
    Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3, 125-142. https://doi.org/10.1146/annurev-food-022811-101132
    Niu, X., Ao, C., Yu, J., Zhao, Y., & Huang, H. (2024). GC-MS Combined with Proteomic Analysis of Volatile Compounds and Formation Mechanisms in Green Teas with Different Aroma Types. Foods, 13(12), 1848. https://www.mdpi.com/2304-8158/13/12/1848
    P, S., Thasale, R., Kumar, D., Mehta, T. G., & Limbachiya, R. (2022). Human health risk assessment of pesticide residues in vegetable and fruit samples in Gujarat State, India. Heliyon, 8(10), e10876. https://doi.org/10.1016/j.heliyon.2022.e10876
    Paixao, N., Fonteles, T., Oliveira, V., Fernandes, F., & Rodrigues, S. (2019). Cold Plasma Effects on Functional Compounds of Siriguela Juice. Food and Bioprocess Technology, 12. https://doi.org/10.1007/s11947-018-2197-z
    Palumbo, F., Lo Porto, C., Fracassi, F., & Favia, P. (2020). Recent Advancements in the Use of Aerosol-Assisted Atmospheric Pressure Plasma Deposition. Coatings, 10(5), 440. https://www.mdpi.com/2079-6412/10/5/440
    Pandiselvam, R., Kaavya, R., Jayanath, Y., Veenuttranon, K., Lueprasitsakul, P., Divya, V., Kothakota, A., & Ramesh, S. V. (2020). Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review. Trends in Food Science & Technology, 97, 38-54. https://doi.org/https://doi.org/10.1016/j.tifs.2019.12.017
    Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1), 4. https://www.mdpi.com/2304-8158/7/1/4
    Parish, M., Massoud, G., Hazimeh, D., Segars, J., & Islam, M. (2023). Green Tea in Reproductive Cancers: Could Treatment Be as Simple? Cancers, 862. https://doi.org/10.3390/cancers15030862
    Parveen, A., Qin, C.-Y., Zhou, F., Lai, G., Long, P., Zhu, M., Ke, J., & Zhang, L. (2023). The Chemistry, Sensory Properties and Health Benefits of Aroma Compounds of Black Tea Produced by Camellia sinensis and Camellia assamica. Horticulturae, 9(12), 1253. https://www.mdpi.com/2311-7524/9/12/1253
    Pervin, M., Unno, K., Ohishi, T., Tanabe, H., Miyoshi, N., & Nakamura, Y. (2018). Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules, 23(6).
    Phongchai, K., Anek, H., & Sasithorn, M. (2008). The Effectiveness of Household Chemicals in Residue Removal of Methomyl and Carbaryl Pesticides on Chinese-Kale. Agriculture and Natural Resources, 42(5), 136-143. https://li01.tci-thaijo.org/index.php/anres/article/view/244581
    Pipliya, S., Kumar, S., Babar, N., & Srivastav, P. P. (2023). Recent trends in non-thermal plasma and plasma activated water: Effect on quality attributes, mechanism of interaction and potential application in food & agriculture. Food Chemistry Advances, 2, 100249. https://doi.org/https://doi.org/10.1016/j.focha.2023.100249
    Radwan, M. A., Abu-Elamayem, M. M., Shiboob, M. H., & Abdel-Aal, A. (2005). Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. Food and Chemical Toxicology, 43(4), 553-557. https://doi.org/https://doi.org/10.1016/j.fct.2004.12.009
    Rahman, A., Putra, E., & Waluyo, S. (2019). The Effect of Pyraclostrobin Application on Yield of Tea (Camelia sinensis (L.) O. Kuntze) under Wet Season. Ilmu Pertanian (Agricultural Science), 3, 153. https://doi.org/10.22146/ipas.26428
    Rana, S., Mehta, D., Bansal, V., Shivhare, U. S., & Yadav, S. K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57(1), 102-112. https://doi.org/10.1007/s13197-019-04035-7
    Ranjitha Gracy, T. K., Gupta, V., & Mahendran, R. (2019). Influence of low-pressure nonthermal dielectric barrier discharge plasma on chlorpyrifos reduction in tomatoes. Journal of Food Process Engineering, 42(6), e13242. https://doi.org/https://doi.org/10.1111/jfpe.13242
    Rasheed, Z. (2019). Molecular evidences of health benefits of drinking black tea. Int J Health Sci (Qassim), 13(3), 1-3.
    Reema, Khanikar, R. R., Bailung, H., & Sankaranarayanan, K. (2022). Review of the cold atmospheric plasma technology application in food, disinfection, and textiles: A way forward for achieving circular economy [Review]. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.942952
    Roslan, A. S., Ismail, A., Ando, Y., & Azlan, A. (2020). Effect of drying methods and parameters on the antioxidant properties of tea (Camellia sinensis) leaves. Food Production, Processing and Nutrition, 2(1), 8. https://doi.org/10.1186/s43014-020-00022-0
    Saey, T. H. (2023). Microwaving an insecticide restores its mosquito-killing power. https://www.sciencenews.org/article/mosquito-microwave-insecticide-spray
    Safwa, S. M., Ahmed, T., Talukder, S., Sarker, A., & Rana, M. R. (2023). Applications of non-thermal technologies in food processing Industries-A review. Journal of Agriculture and Food Research, 100917. https://doi.org/https://doi.org/10.1016/j.jafr.2023.100917
    Sakulnarmrat, K., Dalar, A., Sukru Bengu, A., & Konczak, I. (2018). Phytochemical composition and health-enhancing properties of Oryza sativa L. leaf tea. Integr. Food, Nutr. Metab, 5(6), 1-11.
    Salam, K., Arinkoola, A., & Aminu, M. (2018). Application of response surface methodology (RSM) For the modelling and optimization of sand minimum transport condition (MTC) in pipeline multiphase flow. Petroleum and Coal, 60, 39-340.
    Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225-232. https://doi.org/https://doi.org/10.1016/j.jwpe.2016.01.003
    Sarangapani, C., O'Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies, 44, 235-241. https://doi.org/https://doi.org/10.1016/j.ifset.2017.02.012
    Sarangapani, C., Scally, L., Gulan, M., & Cullen, P. J. (2020). Dissipation of Pesticide Residues on Grapes and Strawberries Using Plasma-Activated Water. Food and Bioprocess Technology, 13(10), 1728-1741. https://doi.org/10.1007/s11947-020-02515-9
    Sarkar, A., Niranjan, T., Patel, G., Kheto, A., Tiwari, B. K., & Dwivedi, M. (2023). Impact of cold plasma treatment on nutritional, antinutritional, functional, thermal, rheological, and structural properties of pearl millet flour. Journal of Food Process Engineering, 46(5), e14317. https://doi.org/https://doi.org/10.1111/jfpe.14317
    Sawangrat, C., Leksakul, K., Bonyawan, D., Anantana, T., & Jomjunyong, S. (2019). Decontamination of pesticide residues on tangerine fruit using non-thermal plasma technology. IOP Conference Series: Earth and Environmental Science, 347(1), 012048. https://doi.org/10.1088/1755-1315/347/1/012048
    Sawangrat, C., Phimolsiripol, Y., Leksakul, K., Thanapornpoonpong, S.-n., Sojithamporn, P., Lavilla, M., Castagnini, J. M., Barba, F. J., & Boonyawan, D. (2022). Application of Pinhole Plasma Jet Activated Water against Escherichia coli, Colletotrichum gloeosporioides, and Decontamination of Pesticide Residues on Chili (Capsicum annuum L.). Foods, 11(18), 2859. https://www.mdpi.com/2304-8158/11/18/2859
    Shang, A., Li, J., Zhou, D.-D., Gan, R.-Y., & Li, H.-B. (2021). Molecular mechanisms underlying health benefits of tea compounds. Free Radical Biology and Medicine, 172, 181-200. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2021.06.006
    Sheikh, S. A., Nizamani, S. M., Jamali, A. A., Panhwar, A. A., Channa, M. J., & Mirani, B. N. (2012). Removal of pesticide residues from okra vegetable through traditional processing. Journal of Basic and Applied Sciences, 8(1), 79-84.
    Shen, H., Yuan, H., Liang, J., Zhou, X., Ge, P., Liu, Y., Gao, T., Yang, K., & Yang, D. (2023). Degradation of Pyraclostrobin in Water Using a Novel Hybrid Gas–Liquid Phase Discharge Reactor. Water, 15(8).
    Shi, M., Cheng, Y., Wang, F., Ji, X., Liu, Y., & Yan, Y. (2022). Rheological Properties of Wheat Flour Modified by Plasma-Activated Water and Heat Moisture Treatment and in vitro Digestibility of Steamed Bread. Front Nutr, 9, 850227. https://doi.org/10.3389/fnut.2022.850227
    Sintuya, P., Narkprasom, K., Jaturonglumlert, S., Whangchai, N., Peng-Ont, D., & Varith, J. (2018). Effect of Gaseous Ozone Fumigation on Organophosphate Pesticide Degradation of Dried Chilies. Ozone: Science & Engineering, 40(6), 473-481. https://doi.org/10.1080/01919512.2018.1466690
    Soni, A., Choi, J., & Brightwell, G. (2021). Plasma-Activated Water (PAW) as a Disinfection Technology for Bacterial Inactivation with a Focus on Fruit and Vegetables. Foods, 10(1), 166. https://www.mdpi.com/2304-8158/10/1/166
    Sreelakshmi, V. P., Vendan, S. E., & Negi, P. S. (2024). The effect of cold plasma treatment on quality attributes and shelf life of apples. Postharvest Biology and Technology, 214, 112975. https://doi.org/https://doi.org/10.1016/j.postharvbio.2024.112975
    Su, W.-Y., Gao, S.-Y., Zhan, S.-J., Wu, Q., Chen, G.-M., Han, J.-Z., Lv, X.-C., Rao, P.-F., & Ni, L. (2022). Evaluation of Volatile Profile and In Vitro Antioxidant Activity of Fermented Green Tea Infusion With Pleurotus sajor-caju (Oyster Mushroom) [Original Research]. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.865991
    Subedi, D. P., Joshi, U. M., & Wong, C. S. (2017). Dielectric Barrier Discharge (DBD) Plasmas and Their Applications. In R. S. Rawat (Ed.), Plasma Science and Technology for Emerging Economies: An AAAPT Experience (pp. 693-737). Springer Singapore. https://doi.org/10.1007/978-981-10-4217-1_13
    Sun, L., Dong, X., Ren, Y., Agarwal, M., Ren, A., & Ding, Z. (2022). Profiling Real-Time Aroma from Green Tea Infusion during Brewing. Foods, 11(5), 684. https://www.mdpi.com/2304-8158/11/5/684
    Sun, R., Yang, W., Li, Y., & Sun, C. (2021). Multi-residue analytical methods for pesticides in teas: a review. European Food Research and Technology, 247(8), 1839-1858. https://doi.org/10.1007/s00217-021-03765-3
    Swami, S., Muzammil, R., Saha, S., Shabeer, A., Oulkar, D., Banerjee, K., & Singh, S. B. (2016). Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits. Environmental Monitoring and Assessment, 188(5), 301. https://doi.org/10.1007/s10661-016-5294-3
    Takemoto, M., & Takemoto, H. (2018). Synthesis of Theaflavins and Their Functions. Molecules, 23(4).
    Tanveer, S., Ilyas, N., Akhtar, N., Akhtar, N., Bostan, N., Hasnain, Z., Niaz, A., Zengin, G., Gafur, A., & Fitriatin, B. N. (2024). Unlocking the interaction of organophosphorus pesticide residues with ecosystem: Toxicity and bioremediation. Environmental Research, 249, 118291. https://doi.org/https://doi.org/10.1016/j.envres.2024.118291
    Tappi, S., Berardinelli, A., Ragni, L., Dalla Rosa, M., Guarnieri, A., & Rocculi, P. (2014). Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies, 21, 114-122. https://doi.org/https://doi.org/10.1016/j.ifset.2013.09.012
    Turkoglu Sasmazel, H., Alazzawi, M., & Kadim Abid Alsahib, N. (2021). Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation. Molecules, 26(6), 1665. https://www.mdpi.com/1420-3049/26/6/1665
    Venkatakrishnan, K., Chiu, H.-F., Cheng, J.-C., Chang, Y.-H., Lu, Y.-Y., Han, Y.-C., Shen, Y.-C., Tsai, K.-S., & Wang, C.-K. (2018). Comparative studies on the hypolipidemic, antioxidant and hepatoprotective activities of catechin-enriched green and oolong tea in a double-blind clinical trial [10.1039/C7FO01449J]. Food & Function, 9(2), 1205-1213. https://doi.org/10.1039/C7FO01449J
    Wang, J., Xing, C., Xia, J., Chen, H., Zhang, J., & Yan, W. (2023). Degradation of carbendazim in aqueous solution by dielectric barrier discharge cold plasma: Identification and toxicity of degradation products. Food Chemistry, 403, 134329. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.134329
    Wang, X., Li, X., Wang, Y., Qin, Y., Yan, B., & Martyniuk, C. J. (2021). A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. Environmental Pollution, 275, 116671. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116671
    Wei, J., Yang, Y., Peng, Y., Wang, S., Zhang, J., Liu, X., Liu, J., Wen, B., & Li, M. (2023). Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants (Camellia sinensis). International Journal of Molecular Sciences, 24(8), 6937. https://www.mdpi.com/1422-0067/24/8/6937
    Xiao, Y., Tan, H., Huang, H., Yu, J., Zeng, L., Liao, Y., Wu, P., & Yang, Z. (2022). Light synergistically promotes the tea green leafhopper infestation-induced accumulation of linalool oxides and their glucosides in tea (Camellia sinensis). Food Chemistry, 394, 133460. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.133460
    Yali, S., Yin, Z., Wanjun, M., Zhi, L., & Haipeng, L. (2022). Characterisation of the volatile compounds profile of Chinese pan-fried green tea in comparison with baked green tea, steamed green tea, and sun-dried green tea using approaches of molecular sensory science. Curr Res Food Sci, 5, 1098-1107. https://doi.org/10.1016/j.crfs.2022.06.012
    Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 6(2), 115-123. https://doi.org/https://doi.org/10.1016/j.aninu.2020.01.001
    Yang, X., Cheng, J.-H., & Sun, D.-W. (2024). Enhancing microorganism inactivation performance through optimization of plate-to-plate dielectric barrier discharge cold plasma reactors. Food Control, 157, 110164. https://doi.org/https://doi.org/10.1016/j.foodcont.2023.110164
    Yigit, N., & Velioglu, Y. S. (2020). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60(21), 3622-3641. https://doi.org/10.1080/10408398.2019.1702501
    Yong, H. I., Kim, H.-J., Park, S., Kim, K., Choe, W., Yoo, S. J., & Jo, C. (2015). Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Research International, 69, 57-63. https://doi.org/https://doi.org/10.1016/j.foodres.2014.12.008
    Yong, H. I., Park, J., Kim, H.-J., Jung, S., Park, S., Lee, H. J., Choe, W., & Jo, C. (2018). An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety. Plasma Processes and Polymers, 15(2), 1700050. https://doi.org/https://doi.org/10.1002/ppap.201700050
    Zeng, S., Lu, Y., Pan, X., & Ling, X.-P. (2022). A Novel Bioflocculant Produced by Cobetia marina MCCC1113: Optimization of Fermentation Conditions by Response Surface Methodology and Evaluation of Flocculation Performance when Harvesting Microalgae. Polish Journal of Microbiology, 71, 341-351. https://doi.org/10.33073/pjm-2022-030
    Zhang, Bingjie Yu, Jingyang Li, C. W., Jianli Zhu, , & Jianhui Ma, Y. Y., Chunxin Duan, Liusheng. (2022). Quickly and efficiently remove multiple pesticides in tea infusions by low-cost carbonized bacterial cellulose. Food Chemistry, 375, 131899. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.131899
    Zhang, B., Tan, C., Zou, F., Sun, Y., Shang, N., & Wu, W. (2022). Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods, 11(18), 2818. https://www.mdpi.com/2304-8158/11/18/2818
    Zhang, J., Xiao, D., Fang, S., Shu, X., Zuo, X., Cheng, C., Meng, Y., & Wang, S. (2015). Characteristics of Low Power CH4/Air Atmospheric Pressure Plasma Jet. Plasma Science and Technology, 17(3), 202. https://doi.org/10.1088/1009-0630/17/3/06
    Zhang, Q., Liu, M., & Ruan, J. (2017). Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biology, 17(1), 64. https://doi.org/10.1186/s12870-017-1012-8
    Zhang, S., Wu, S., Yu, Q., Shan, X., Chen, L., Deng, Y., Hua, J., Zhu, J., Zhou, Q., Jiang, Y., Yuan, H., & Li, J. (2023). The influence of rolling pressure on the changes in non-volatile compounds and sensory quality of congou black tea: The combination of metabolomics, E-tongue, and chromatic differences analyses. Food Chemistry: X, 20, 100989. https://doi.org/https://doi.org/10.1016/j.fochx.2023.100989
    Zhang, Y., Hou, Y., Zhang, Y., Chen, J., Chen, F., Liao, X., & Hu, X. (2012). Reduction of diazinon and dimethoate in apple juice by pulsed electric field treatment [https://doi.org/10.1002/jsfa.4636]. Journal of the Science of Food and Agriculture, 92(4), 743-750. https://doi.org/https://doi.org/10.1002/jsfa.4636
    Zhanga, A.-A., , P. P. S., , Q. B., , X.-M. F., , J.-B. N., & , H.-W. X. (2022). Pesticide residue elimination for fruits and vegetables: the mechanisms, applications, and future trends of thermal and non-thermal technologies. Journal of Future Foods, 2(3), 223-240. https://doi.org/https://doi.org/10.1016/j.jfutfo.2022.06.004
    Zhao, C. N., Tang, G. Y., Cao, S. Y., Xu, X. Y., Gan, R. Y., Liu, Q., Mao, Q. Q., Shang, A., & Li, H. B. (2019). Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants (Basel), 8(7). https://doi.org/10.3390/antiox8070215
    Zheng, X.-Q., Li, Q.-S., Xiang, L.-P., & Liang, Y.-R. (2016). Recent Advances in Volatiles of Teas. Molecules, 21(3), 338. https://www.mdpi.com/1420-3049/21/3/338
    Zheng, Y., Wu, S., Dang, J., Wang, S., Liu, Z., Fang, J., Han, P., & Zhang, J. (2019). Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. Journal of Hazardous Materials, 377, 98-105. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.05.058
    Zhou, R., Zhou, R., Wang, P., Xian, Y., Mai-Prochnow, A., Lu, X., Cullen, P. J., Ostrikov, K., & Bazaka, K. (2020). Plasma-activated water: generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics, 53(30), 303001. https://doi.org/10.1088/1361-6463/ab81cf
    Zhou, R., Zhou, R., Yu, F., Xi, D., Wang, P., Li, J., Wang, X., Zhang, X., Bazaka, K., & Ostrikov, K. (2018). Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chemical Engineering Journal, 342, 401-409. https://doi.org/https://doi.org/10.1016/j.cej.2018.02.107
    Zhu, Y., Zhang, T., Xu, D., Wang, S., Yuan, Y., He, S., & Cao, Y. (2019). The removal of pesticide residues from pakchoi (Brassica rape L. ssp. chinensis) by ultrasonic treatment. Food Control, 95, 176-180. https://doi.org/https://doi.org/10.1016/j.foodcont.2018.07.039
    Zou, C., Zhang, X., Xu, Y., & Yin, J. (2024). Recent Advances Regarding Polyphenol Oxidase in Camellia sinensis: Extraction, Purification, Characterization, and Application. Foods, 13(4). https://doi.org/10.3390/foods13040545
    王志深 (2012). 乾茶葉去除農藥殘留的方法 (中國 Patent No. 中華人民共和國國家知識產權局.
    有機農業全球資訊網. (2018). 農藥用水洗的掉?農藥懶人包一次掌握. https://info.organic.org.tw/1842/
    李紅曦. (2019). 邁向臺灣茶產業3.0之轉型契機與發展芻議. 農藥部. https://agritech-foresight.atri.org.tw/article/contents/1898
    邱瑞騰. (1995). 微波加熱炒菁及乾燥對包種茶品質之影響. 農業部
    食藥署. (2024a). 食品中殘留農藥檢驗方法-多重殘留分析方法(五).
    食藥署. (2024b). 農藥殘留容許量標準. https://consumer.fda.gov.tw/Law/PesticideList.aspx?nodeID=520
    高穗生, 曾., 洪巧珍, 蔡勇勝, 謝奉家. (2009). 生物農藥簡介. 農業部
    國家實驗研究院. (2021). 奇妙的電漿與電漿的應用. https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&qcat=0I164512522332344267&sid=0J123382852944198982
    陳雅玲. (2022). 臺灣為越南茶葉第1大出口市場. https://www.trade.gov.tw/Pages/Detail.aspx?nodeid=45&pid=742361
    陳雲康. (2024). 茶訊月刊. In 張曉麗 (Ed.), (Vol. 1056, pp. 26).
    黃玉如. (2018). 農藥的水溶性與脂溶性簡介. 農業部
    楊小瑩、林儒宏. (2023). 外銷茶葉農藥殘留標準(2023 年版). 農業部農業統計資料查詢系統
    農業部. (2022). 農用藥劑分類及作用機制檢索(第四版).
    農業部. (2023). 我國農藥管理及其展望. https://pesticide.aphia.gov.tw/information/Data/BriefContent/68
    農業部. (2024). 臺灣特色茶分類及加工製程簡介. https://www.tbrs.gov.tw/ws.php?id=4748
    農業藥物試驗所. (2024). 外銷農產品用藥基準. https://www.acri.gov.tw/Item/Detail/%E5%A4%96%E9%8A%B7%E8%BE%B2%E7%94%A2%E5%93%81%E7%94%A8%E8%97%A5%E5%9F%BA%E6%BA%96-1
    蔡宗顯. (2020). 108 年茶葉出口值創 1.2 億美元新高,今年前 8 月則受疫情影響衰退 26.5%. 財政部統計處
    衛生福利部. (2015). 食藥署回應說明媒體報導「英國藍問題茶多來自越南」「50嵐也被驗出農藥超標」. https://www.mohw.gov.tw/cp-2643-20799-1.html
    謝敏楠, 林., 梁天罡, 劉偉, & 賀英倩 (2009). 一種去除茶葉中農藥殘留的方法 (中國 Patent No. 中華人民共和國國家知識產權局.
    鍾劍章, 韋哲君, 王文林, 譚秋錦, 許鵬, 農玉琴, & 湯秀華. (2022). 油梨葉茶的香氣成分與品質特點分析. Food Research & Development, 43(5).

    無法下載圖示 校內:2027-07-22公開
    校外:2027-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE