簡易檢索 / 詳目顯示

研究生: 賴佩琳
Lai, Pei-Lin
論文名稱: 利用有機模板法合成中孔洞氧化矽複合材料及其應用
Synthesis and Application of Mesoporous Silica-Based Hybrid Materials Via Surfactant-Templating Method
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 中孔洞氧化矽複合材料
外文關鍵詞: mesoporous, silica, hybrid materials
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩大研究主題,第一部分以明膠為有機模板合成多種中孔洞氧化矽複合材料,並探討其相關應用。第二部分是以pH值的調控合成囊泡狀中孔洞氧化矽材料及應用於散射型液晶顯示器。

    第一部分:以明膠為有機模板合成多種中孔洞氧化矽複合材料
    本研究利用毒性低對環境無汙染,且有良好的生物相容性及分解性的明膠(gelatin)為有機模板來製備中孔洞材料。水解後的明膠帶有許多胺基及其他極性官能基,可與矽酸鈉合成有機無機混成材料,經由移除有機物,即可得到有高表面積、熱穩定性高的中孔洞氧化矽材料。此外,明膠也可以做為奈米粒子的包覆劑,將欲被包埋的奈米粒子有效的包埋於中孔洞氧化矽中,即可合成出多種中孔洞氧化矽複合材料。
    利用兩種天然有機高分子之混合(明膠+藻酸鈉),明膠與氧化矽的前驅物矽酸鈉可合成具有多孔性質的材料;而藻酸鈉可與鈣離子結合,提高氧化矽孔洞材料中的鈣含量。透過水熱處理、煅燒過程、pH值的調控、改變無機物濃度,產生更多HAp粒子嵌入於中孔洞氧化矽中(縮寫為:HAp@MS)。可藉由穿透式電子顯微鏡(TEM)及X-ray粉末繞射儀(XRD)驗證,HAp@MS複合材料在600℃高溫煅燒下,有明顯HAp結晶粒子型態產生,此HAp@MS複合材料具有高的表面積(190 m2/g)。
    利用模板法將市售奈米碳酸鈣乘載於孔洞材料中,可以縮短且簡化製程的方式來達到有效封閉牙本質小管的效果。本研究透過H2SO4及Na2CO3為鹼源調控pH值、改變有機物無機物含量、無機物濃度、奈米碳酸鈣含量,將奈米碳酸鈣包覆於中孔洞氧化矽內(縮寫為:CaCO3@MS),經由鍛燒可得氧化鈣之中孔洞氧化矽複合材料(縮寫為:CaO@MS)。藉由穿透式電子顯微鏡(TEM),可觀察奈米碳酸鈣被氧化矽完整包覆。透過HCl酸處理,可選擇性的溶解碳酸鈣成分,拓印出原有奈米碳酸鈣的形態,進而產生中空的氧化矽,可驗證碳酸鈣被氧化矽包覆。
    此外,利用模板法,將市售奈米級二氧化鈦包覆於中孔洞氧化矽(縮寫為:TiO2@MS)。在不同的氧化矽源,不同有機物及無機物含量、濃度,及水熱處理,經簡易的攪拌混合合成TiO2@MS複合材料。藉由穿透式電子顯微鏡(TEM),可觀察二氧化鈦被孔洞氧化矽完整包覆。並與Rhodamine B結合,在太陽光照射下光解Rhodamine B,評估複合材料對光催化的活性。可得,擁有孔洞氧化矽層的二氧化鈦粒子能增加吸附染料分子的能力,增加染料分子與二氧化鈦的接觸,提升其光催化的效果,因此複合材料比市售的P25具有更高的光催化能力。

    第二部分:pH值的調控合成囊泡狀中孔洞氧化矽材料及應用於液晶顯示
    本研究利用有機模板P123及F127,為EOnPOmEOn三區塊共聚高分子,作為結構的導向,無機物的前驅物則採用TEOS。經由pH值調控TEOS的水解速度與縮合速度,將有機模板與無機物經簡易的攪拌混合,製備出具有高的表面積(200-300 m2/g)的囊泡狀中孔洞氧化矽。可應用於液晶顯示方面,材料與液晶分子結合後皆有不錯的遮蔽光線之能力,且驅動電壓前後有暗態與亮態差異。

    In this thesis, there are two research topics. In the first part, we provide surfactant template method to synthesize of a variety of mesoporous silica hybrid materials and studied on their applications. In the second part, a simple pH control method was used to prepare mesoporous silica foams for application in LCD displayer.

    Part 1: Synthesis and Applications of Mesoporous Silica-Based Hybrid Materials via Surfactant Template Method
    We used natural polymer gelatin as the organic surfactant to synthesize the mesoporous materials. Gelatin have many amine group and others group when gelatin is hydrolysis, it can mix gelatin and sodium silica to synthesize organic-inorganic hybrid materials. The calcined mesoporous silica possesses high surface area and thermal stability. Besides, gelatin is also play a role of dispersion agent of nanoparticles, nanoparticles@mesoporous silica was thus conveniently obtained from a simple silicification and calcination.
    We use a mixture of gelatin and sodium alginate as the co-templates (gelatin for silica gelation and sodium alginate for Ca2+ deposition), sodium silicate as the silica precursor, Ca(NO3)2•4H2O as the calcium precursor and NaH2PO4•H2O as the phosphate precursor, to synthesize HAp nanoparticles@mesoporous (HAp@MS). The calcium content in the mesoporous silica increases with the content of the alginic acid with chelating property to bivalent metal cation. With a well control on hydrothermal treatment, calcination,pH value, the H2O content, The content of the HAp in the HAp@MS can be adjustable. After calcination at 600°C for removal of the surfactant, the crystallization of calcium phosphate phases was promoted and the bioglass-like mesoporous hybrids were obtained. The resulted HAp@MS samples exhibiting high surface area (190 m2/g) and porosity.
    The CaCO3 nanoparticles@Mesoporous silicas (denoted as CaCO3@MS) were also prepared by surfactant template method. By controlling on pH with difference base source, fine tuning gelatin/S.S. ratio, the H2O content, the CaCO3@MS have been successfully synthesized. After calcination, the CaCO3@MS transforms to the CaO@MS. The structural morphology of CaCO3@MS were characterized by transmission electron microscopy (TEM). Acidifying the samples obviously leads to selective dissolution of the CaCO3 component from the particles, and the silica replicates the original morphology of the CaCO3 nanoparticles.
    In addition, the surfactant-templating method can be extended to synthesize TiO2 nanoparticles@mesoporous silicas (denoted as TiO2@MS).The structural morphology of TiO2@MS were characterized by Transmission electron microscopy(TEM).The TiO2@MS exhibited high surface area (289m2/g), higher than the commercial P25 (50 m2/g). The photocatalytic activity of TiO2@MS was measured by degradation of Rhodamine B under solar irradiation.The porous silica layer of TiO2@MS can improve the absorption ability of dye, and increase the contact of dye and activity active sites of TiO2 nanoparticles.. This is because that the TiO2@MS hybrid materials have higher photocatalytic activity than commercial P25.

    Part 2: pH Controlled Synthesis of Mesoporous Silica Foams and Application of LCD Displayer
    Tetraethyl orthosilicate (TEOS) was used as silica source and the nonionic surfactant P123(EO20PO70EO20) and F127(EO106PO70EO106) as template. Under different pH value, the rates of hydrolysis and condensation of TEOS are different. The obtained mesoporous silica foams have different size and dispersion. The morphology of mesoporous silica foams were investigated by Transmission electron microscopy(TEM). The resulted mesoporous silica foams exhibited high surface area (200-300 m2/g). After hydrophobic surface modification, the mesoporous silica foams can well disperse in liquid crystal that was assembled to a scattering-mode LCD displayer.

    第一章 緒論 1 1.1中孔洞材料介紹 1 1.2中孔洞材料的主要研究範疇 2 1.3中孔洞矽材合成 3 1.3.1界面活性劑 3 1.3.1.1界面活性劑分類 4 1.3.1.2明膠(Gelatin) 5 1.3.1.3藻酸鈉 (Sodium Alginic) 6 1.3.1.4微胞的形成 6 1.3.1.5界面活性劑的分子排列 7 1.3.2矽酸鹽的化學概念 9 1.3.3 TEOS的基本概念 11 1.4生醫玻璃 13 1.5二氧化鈦 14 1.5.1二氧化鈦的光催化機制 15 1.5.2 Rhodamine B 17 1.6液晶 18 1.6.1矽烷(silane)修飾 18 1.6.2液晶的應用 19 第二章 實驗部份 21 2.1 化學藥品 21 2.2 實驗步驟 22 2.2.1 HAp粒子嵌於中孔洞氧化矽 (HAp@MS)複合材料之合成步驟 22 2.2.2將奈米碳酸鈣包覆於中孔洞二氧化矽之複合材料之合成步驟 24 2.2.3 二氧化鈦奈米粒子包覆在中孔洞氧化矽的複合材料之合成步驟 25 2.2.4 囊泡狀中孔洞氧化矽材料 26 2.3 儀器鑑定分析 27 2.3.1穿透式電子顯微鏡(Transmission Electron Microscopy;TEM) 27 2.3.2能量分散光譜儀 (Energy Dispersive Spectrometer;EDX) 27 2.3.3氮氣等溫吸附-脫附測量 (N2 adsorption/desorption isotherm) 28 2.3.3.1 吸附等溫曲線 30 2.3.4 X-射線粉末繞射光譜 (Powder X-Ray Diffraction;XRD) 32 2.3.5熱重分析儀 (Thermogravimetric analysis;TGA ) 33 2.3.6 分光光度計(Spectrophotometer) 33 第三章 以明膠為有機模板合成多種中孔洞氧化矽複合材料 34 3.1合成HAp粒子並嵌入於中孔洞氧化矽 (HAp@MS)之複合材料 34 3.1.1研究目的與動機 34 3.1.2有機物含量對反應系統的影響 36 3.1.3煅燒處理對材料的影響 38 3.1.4水熱處理對反應系統的影響 39 3.1.5 pH值對HAp@MS之孔洞性質的影響 41 3.1.6無機物濃度對反應系統的影響 42 3.2將奈米碳酸鈣包覆於中孔洞二氧化矽之複合材料 44 3.2.1研究目的與動機 44 3.2.2 NaOH為鹼源對二氧化矽包覆奈米碳酸鈣的影響 45 3.2.2.1有機無機物含量對包覆程度的影響 45 3.2.2.2奈米碳酸鈣含量對包覆程度的影響 46 3.2.2.3無機物濃度對包覆程度的影響 49 3.2.3 Na2CO3為鹼源對氧化矽包覆奈米碳酸鈣的影響 50 3.2.3.1 pH值對奈米碳酸鈣包覆程度的影響 51 3.2.3.2 pH值為5.0,奈米碳酸鈣含量對包覆程度的影響 52 3.2.3.3 pH值為6.0,奈米碳酸鈣含量對包覆程度的影響 54 3.3合成二氧化鈦奈米粒子包覆在中孔洞氧化矽的複合材料及其應用 57 3.3.1使用TEOS為氧化矽源對包覆二氧化鈦的影響 57 3.3.1.1有機物含量對反應系統的影響 58 3.3.1.2水熱處理對反應系統的影響 63 3.3.1.3無機物含量對反應系統的影響 66 3.3.1.4無機物濃度對反應系統的影響 69 3.3.2使用S.S.為氧化矽源對包覆二氧化鈦的影響 72 3.3.2.1 pH=5.0時有機無機物含量包覆氧化鈦奈米粒子的影響 72 3.3.2.2 pH=6.0時有機無機物含量包覆二氧化鈦奈米粒子影響 75 3.3.2.3水熱處理對反應系統的影響 77 第四章 PH值的調控合成囊泡狀中孔洞氧化矽材料及應用於液晶顯示 80 4.1 研究目的與動機 80 4.2 以P123為模板在不同pH值對結構的影響 81 4.3以F127為模板在不同pH值對結構的影響 84 4.4 機制推測 86 4.5液晶顯示的應用 86 第五章 結論 88 參考文獻 90

    1. J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao, Angewandte Chemie, 2003, 115, 3254-3258.
    2. A. Vinu, V. Murugesan and M. Hartmann, Chemistry of materials, 2003, 15, 1385-1393.
    3. H.-P. Lin, C.-Y. Tang and C.-Y. Lin, Jour nal of the Chi nese Chem i cal So ci ety, 2002, 49, 981-988.
    4. V. Alfredsson and M. W. Anderson, Chemistry of materials, 1996, 8, 1141-1146.
    5. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U. Kwon, O. Terasaki, S.-E. Park and G. D. Stucky, The Journal of Physical Chemistry B, 2002, 106, 2552-2558.
    6. H.-P. Lin and C.-Y. Mou, Accounts of chemical research, 2002, 35, 927-935.
    7. A. Bhaumik and S. Inagaki, Journal of the American Chemical Society, 2001, 123, 691-696.
    8. A. Walcarius, M. Etienne and B. Lebeau, Chemistry of materials, 2003, 15, 2161-2173.
    9. T. Yokoi, H. Yoshitake and T. Tatsumi, Journal of Materials Chemistry, 2004, 14, 951-957.
    10. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu, Angewandte Chemie International Edition, 2003, 42, 413-417.
    11. F. Noll, M. Sumper and N. Hampp, Nano Letters, 2002, 2, 91-95.
    12. Z. Zhong, Y.D. Yin, B. Gates and Y. Xia, Advanced Materials, 2000, 12, 206-209.
    13. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
    14. C. E. Fowler, D. Khushalani and S. Mann, Chemical Communications, 2001, 2028-2029.
    15. Q. Huo, J. Feng, F. Schüth and G. D. Stucky, Chemistry of Materials, 1997, 9, 14-17.
    16. C. Fowler, D. Khushalani, B. Lebeau and S. Mann, Advanced Materials, 2001, 13, 649-652.
    17. J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson and E. Sheppard, Journal of the American Chemical Society, 1992, 114, 10834-10843.
    18. C. Kresge, M. Leonowicz, W. Roth, J. Vartuli and J. Beck, nature, 1992, 359, 710-712.
    19. S. Mann, Angewandte Chemie International Edition, 2000, 39, 3392-3406.
    20. N. Kröger, R. Deutzmann and M. Sumper, Science, 1999, 286, 1129-1132.
    21. E. G. Vrieling, T. P. Beelen, R. A. van Santen and W. W. Gieskes, Angewandte Chemie International Edition, 2002, 41, 1543-1546.
    22. Y. Cheng, S. Yu, X. Zhen, X. Wang, W. Wu and X. Jiang, ACS Applied Materials & Interfaces, 2012, 4, 5325-5332.
    23. G. Kong, R. D. Braun and M. W. Dewhirst, Cancer research, 2000, 60, 4440-4445.
    24. B. K. Nanjwade, J. Singh, K. A. Parikh and F. Manvi, International journal of pharmaceutics, 2010, 385, 176-180.
    25. D. Y. Chan, D. J. Mitchell, B. W. Ninham and B. A. Pailthorpe, J. Chem. Soc., Faraday Trans. 2, 1980, 76, 776-784.
    26. R. K. Iler, New York, 43.
    27. C. J. Brinker and G. W. Scherer, Journal of non-crystalline solids, 1985, 70, 301-322.
    28. L. L. Hench, Journal of the American Ceramic Society, 1991, 74, 1487-1510.
    29. Y.-C. Chiang, H.-J. Chen, H.-C. Liu, S.-H. Kang, B.-S. Lee, F.-H. Lin, H.-P. Lin and C.-P. Lin, Journal of dental research, 2010, 89, 236-240.
    30. K. Hashimoto, H. Irie and A. Fujishima, Japanese Journal of Applied Physics, 2005, 44, 8269.
    31. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chemical reviews, 1995, 95, 69-96.
    32. S. N. Frank and A. J. Bard, Journal of the American Chemical Society, 1977, 99, 303-304.
    33. B. Kraeutler and A. J. Bard, Journal of the American Chemical Society, 1978, 100, 2239-2240.
    34. H. Reiche, W. W. Dunn and A. J. Bard, Journal of Physical Chemistry, 1979, 83, 2248-2251.
    35. C. Anderson and A. J. Bard, The Journal of Physical Chemistry B, 1997, 101, 2611-2616.
    36. C. Anderson and A. J. Bard, The Journal of Physical Chemistry, 1995, 99, 9882-9885.
    37. S. Iijima, nature, 1991, 354, 56-58.
    38. I.-C. Khoo and S.-T. Wu, Optics and nonlinear optics of liquid crystals, World Scientific Publishing Company Incorporated, 1993.
    39. M. Vallet‐Regí and E. Ruiz‐Hernández, Advanced Materials, 2011, 23, 5177-5218.
    40. V. Aina, C. Morterra, G. Lusvardi, G. Malavasi, L. Menabue, S. Shruti, C. L. Bianchi and V. Bolis, The Journal of Physical Chemistry C, 2011, 115, 22461-22474.
    41. Y. Minaberry and M. a. Jobbágy, Chemistry of Materials, 2011, 23, 2327-2332.
    42. M. Kellermeier, E. Melero-Garcia, F. Glaab, R. Klein, M. Drechsler, R. Rachel, J. M. Garcia-Ruiz and W. Kunz, Journal of the American Chemical Society, 2010, 132, 17859-17866.
    43. Y. Ren, M. Chen, Y. Zhang and L. Wu, Langmuir, 2010, 26, 11391-11396.
    44. L. s. Pinho and M. J. Mosquera, The Journal of Physical Chemistry C, 2011, 115, 22851-22862.

    下載圖示 校內:2018-07-16公開
    校外:2018-07-16公開
    QR CODE