簡易檢索 / 詳目顯示

研究生: 林東潔
Lin, Tung-Chieh
論文名稱: 酵母菌(Saccharomyces cerevisiae)六碳糖轉運蛋白質基因Hxt2、Hxt5、Hxt6及Hxt10對於克魯維乳酸酵母菌(Kluyveromyces lactis)生長之影響
Over-expression of Saccharomyces cerevisiae Hexose Transporter genes Hxt2, Hxt5, Hxt6 and Hxt10 on the Growth of Kluyveromyces lactis
指導教授: 宋皇模
Sung, Huang-Mo
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 80
中文關鍵詞: 克魯維乳酸酵母菌六碳糖轉運蛋白質葡萄糖高親和力轉運蛋白質TEF啟動子生長曲線
外文關鍵詞: Kluyveromyces lactis, Hexose Transporter (HXT), High Glucose binding Affinity Transporter, TEF Promoter, Growth Curve
相關次數: 點閱:204下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酵母菌的生長與代謝所需的能量主要透過呼吸作用(respiration)以及發酵作用(fermentation)來產生。在酵母菌中,每一分子的葡萄糖透過呼吸作用產生的ATP,相較於發酵作用多了約16倍。在環境中含有可發酵性碳源時,不論是否存在氧氣,大部分的酵母菌都會選擇進行發酵作用,而非進行呼吸作用,這個現象稱之為Crabtree effect。有此現象的酵母菌稱為Crabtree-positive酵母菌,例如Saccharomyces cerevisiae;相反的,Kluyveromyces lactis是Crabtree-negative酵母菌,主要進行呼吸作用,不會因為環境中含有可發酵性碳源而轉為發酵作用。另外,S. cerevisiae具有多達約20種對應不同環境的六碳糖轉運蛋白質(Hexose Transport,HXT),而對於葡萄糖有高親和力的六碳糖轉運蛋白質,會在低濃度葡萄糖的環境中表現,攝取環境中稀少的葡萄糖,但是攝取速率相較於低親和力六碳糖轉運蛋白質慢,相比之下K. lactis只具有4種六碳糖轉運蛋白質。而為了研究S. cerevisiae中對葡萄糖具有高親和力的六碳糖轉運蛋白質置入到K. lactis中是否會影響K. lactis的生長速率。首先,比較S. cerevisiae中屬於實驗室菌株的BY4741以及野生型菌株RM11-1a對於葡萄糖具有高親和力的六碳糖轉運蛋白質的序列差異,發現兩者近乎沒有差異後挑選BY4741進行片段放大後插入含持續表現型啟動子 (constitutive promoter) TEF的質體中,再透過電脈衝穿孔(electroporation)的方式將含目標基因Hxt2、Hxt5、Hxt6及Hxt10的質體置入K. lactis中,而透過呼吸作用抑制劑 (Antimycin A),選出具有發酵能力的K. lactis (KB101)作為觀察的目標菌株。結果顯示S. cerevisiae中對於葡萄糖具有高親和力的六碳糖轉運蛋白質可以縮短K. lactis在呼吸作用時doubling time所需的時間,而發酵作用則沒有明顯的差異,或許是因為高親和力的六碳糖轉運蛋白質攝取葡萄糖的速率不足以提升發酵所需的碳源,未來可以考慮放入複合種類的高親和力葡萄糖轉運蛋白質,或許可以縮短其在發酵生長時doubling time所需的時間,或者使用可以快速攝取大量葡萄糖的低親和力的六碳糖轉運蛋白質來增加攝取葡萄的速率,以補足進行發酵作用時所需的碳源。
    關鍵字:克魯維乳酸酵母菌、六碳糖轉運蛋白質、葡萄糖高親和力轉運蛋白質、TEF啟動子、生長曲線

    The energy required for yeast growth is mainly produced by respiration and fermentation processes. In yeast, ATP produced by one glucose molecule through the respiration process approximates 16 times more than that of the fermentation process. When the fermentable carbon source is available, some yeasts prefer the fermentation process rather than the respiration process to metabolize sugars no matter the oxygen is present or not. This phenomenon is called the Crabtree effect. Yeasts with aerobic fermentation capability are called Crabtree-positive yeasts, such as Saccharomyces cerevisiae; on the other hand, Crabtree-negative yeasts such as Kluyveromyces lactis mainly perform respiration process rather than fermentation process when the oxygen is present. In addition, S. cerevisiae has about 20 different kinds of hexose transporter proteins (Hxtps) to accommodate various environmental conditions. Hexose transporters with high glucose binding affinity express and uptake scarce glucose. However, the glucose uptake of these transporters is less efficient than that of transporters with low glucose binding affinity. In contrast, K. lactis contains only four hexose transporter genes. In this study, four high glucose binding affinity hexose transporter genes of S. cerevisiae were overexpressed in K. lactis for examining the effects of glucose transport on the growth of K. lactis. In this study, Hxt2, Hxt5, Hxt6, and Hxt10 of S. cerevisiae were over-expressed in K. lactis KB101 strain to check if these genes affect the respiration or fermentation processes of K. lactis. Analyses results showed that the hexose transporters with high glucose binding affinity decreased the doubling time of K. lactis under respiration growth conditions, while posed no significant effect on the growth of K. lactis under fermentation growth conditions. It is possible that the slow glucose transport capacity of the high glucose binding affinity hexose transporters is not able to provide enough glucose for fermentation growth.

    Key Words: Kluyveromyces lactis, Hexose Transporter (HXT), High Glucose binding Affinity Transporter, TEF Promoter, Growth Curve.

    目錄 中文摘要 I 英文延伸摘要 III 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 壹、緒論 1 1-1、前言 1 1-1-1酵母菌的代謝反應 1 1-1-2葡萄糖轉運蛋白質基因 3 1-1-3 TEF Promoter (TEF啟動子) 6 1-2研究動機與目的 7 貳、實驗材料與方法 8 2-1實驗材料方法與原理 8 2-1-1菌種 8 2-1-2藥品、材料 9 2-1-3實驗儀器 14 2-2實驗方法 16 2-2-1培養基配置、緩衝液、試劑 16 2-2-2菌種生長及保存 21 2-2-3 K. lactis營養缺陷測試 21 2-2-4 K. lactis發酵功能測試 21 2-2-5 Primer 設計 21 2-2-6酵母菌基因組DNA (genomic DNA,gDNA) 萃取 21 2-2-7質體DNA萃取 22 2-2-8聚合酶連鎖反應 (Polymerase chain reaction,PCR) 23 2-2-9質體DNA重組 23 2-2-10重組質體DNA轉化到DH5α製成的competent cell 23 2-2-11 K. lactis 電脈衝穿孔轉型 24 2-2-12總RNA萃取 25 2-2-13互補DNA(complementary DNA,cDNA)的製備 26 2-2-14未轉型與轉型成功K. lactis的生長速率測定 26 參、研究架構 27 肆、結果與討論 28 3-1 S. cerevisiae實驗室菌株BY4741及野生型菌株RM11-1a六碳糖轉運蛋白質序列比對 28 3-2 K. lactis ATCC8651、GG799、KB101生長曲線比較及發酵作用生長測試 28 3-3構建不同六碳糖轉運蛋白質基因到Pcev-G1-Km載體 29 3-4重組DNA片段轉入K. lactis的cDNA 確認 30 3-5不同六碳糖轉運蛋白質基因對K. lactis生長的影響 31 伍、結論 35 參考文獻、 36 結果圖表 40 附錄 73 附件一、ATCC8651 250rpm 30oC生長曲線 73 附件二、GG799 250rpm 30oC生長曲線 74 附件三、GG799 100rpm 30oC含Antimycin a生長曲線 75 附件四、KB101 100rpm 30oC含Antimycin a生長曲線 76 附件五、BY4741及RM11-1a ScHxt2 序列比對 77 附件六、BY4741及RM11-1a ScHxt5 序列比對 78 附件七、BY4741及RM11-1a ScHxt6 序列比對 79 附件八、BY4741及RM11-1a ScHxt10 序列比對 80   表目錄 表1- 1 LB (Liquid or Solid) / autoclave sterilizer 16 表1- 2 Ampicillin-LB (Liquid or Solid) / autoclave sterilizer 16 表1- 3 SOC (Liquid) / 0.22μm Filter sterilization 16 表1- 4 YPD (Liquid or Solid) / autoclave sterilizer 17 表1- 5 G418-YPD (Liquid or Solid) / autoclave sterilizer 17 表1- 6 Antimycin A-G418-YPD (Liquid or Solid) / autoclave sterilizer 17 表1- 7 Synthetic Complete (SC) medium / autoclave sterilizer 18 表1- 8 50X TAE Buffer (PH8.5) 19 表1- 9 10X TE (4oC) 19 表1- 10 Sution I (4oC) 19 表1- 11 Sution II (每次使用前才配) 19 表1- 12 Sution III (4oC) 19 表1- 13 TSS Buffer (Light protection 4oC) 20 表1- 14 PB Buffer 20 表1- 15 EB Buffer 20 表1- 16 TES Buffer 20 表2- 1菌株 40 表2- 2引子(primer) 41 表3- 1生長曲線測定(250rpm、30oC) 42 表3- 2長曲線測定(100rpm、30oC、antimycin A) 43 表3- 3長曲線測定(250rpm、30oC、antimycin A) 44   圖目錄 圖 1呼吸 (Respiration) 生長 45 圖 2發酵 (Fermentation) 生長 45 圖 3呼吸生長的Doubling timeATCC8651、GG799以及KB101的Doubling time 46 圖 4發酵生長GG799以及KB101的Doubling time 46 圖 5 Pcev-G1-Km Sequence map 47 圖 6引子設計位置以及放大出的產物範圍 48 圖 7 BY4741六碳糖轉運蛋白質 (Hxt) 電泳圖 49 圖 8質體轉型DNA電泳圖 49 圖 9質體轉型DNA PCR電泳圖 49 圖 10 gDNA PCR電泳圖 50 圖 11 cDNA PCR電泳圖 50 圖 12 KB101 250rpm 30oC生長曲線 51 圖 13 KB101 250rpm 30oC含Antimycin A生長曲線 52 圖 14 KB101 / Vector-empty 250rpm 30oC生長曲線 53 圖 15 KB101 / Vector-empty 250rpm 30oC含Antimycin a生長曲線 54 圖 16 KB101 / pTEF ScHxt2 250rpm 30oC生長曲線 55 圖 17 KB101 / pTEF ScHxt2 250rpm 30oC含Antimycin A生長曲線 56 圖 18 KB101 / pTEF ScHxt5 250rpm 30oC生長曲線 57 圖 19 KB101 / pTEF ScHxt5 250rpm 30oC含Antimycin A生長曲線 58 圖 20 KB101 / pTEF ScHxt6 250rpm 30oC生長曲線 59 圖 21 KB101 / pTEF ScHxt6 250rpm 30oC含Antimycin A生長曲線 60 圖 22 KB101 / pTEF ScHxt10 250rpm 30oC生長曲線 61 圖 23 KB101 / pTEF ScHxt10 250rpm 30oC含Antimycin A生長曲線 62 圖 24呼吸作用生長的KB101與KB101 / Vector-empty Doubling time比較 63 圖 25發酵作用生長的KB101與KB101 / Vector-empty Doubling time比較 63 圖 26呼吸作用生長及發酵作用生長的KB101 Doubling time比較 64 圖 27呼吸作用生長及發酵作用生長的KB101 / Vector-empty Doubling time比較 64 圖 28呼吸作用生長的KB101、KB101 / Vector-empty與KB101 / pTEF ScHxt2 Doubling time比較 65 圖 29發酵作用生長的KB101、KB101 / Vector-empty與KB101 / pTEF ScHxt2 Doubling time比較 65 圖 30呼吸作用生長及發酵作用生長的KB101 / pTEF ScHxt2 Doubling time比較 66 圖 31呼吸作用生長的KB101、KB101 / Vector-empty與KB101 / pTEF ScHxt10 Doubling time比較 67 圖 32發酵作用生長的KB101、KB101 / Vector-empty與KB101 / pTEF ScHxt10 Doubling time比較 67 圖 33呼吸作用生長及發酵作用生長的KB101 / pTEF ScHxt10 Doubling time比較 68 圖 34呼吸作用生長的KB101、KB101 / Vector-empty與KB101 / pTEF ScHxt5 Doubling time比較 69 圖 35發酵作用生長的KB101、KB101 / Vector-empty與KB101 / pTEF ScHxt5 Doubling time比較 69 圖 36呼吸作用生長及發酵作用生長的KB101 / pTEF ScHxt5 Doubling time比較 70 圖 37呼吸作用生長的KB101、KB101 / Vector-empty與KB101 / pTEF ScHxt6 Doubling time比較 71 圖 38發酵作用生長的KB101、KB101 / Vector-empty與KB101 / pTEF ScHxt6 Doubling time比較 71 圖 39呼吸作用生長及發酵作用生長的KB101 / pTEF ScHxt6 Doubling time比較 72

    Bitzilekis, S., & Barnett, J. A. (1997). Exponential growth rates of species of the yeast genus Kluyveromyces. FEMS Microbiol Lett, 146(2), 189-190. doi:10.1111/j.1574-6968.1997.tb10191.x
    Breunig, K. D., Bolotin-Fukuhara, M., Bianchi, M. M., Bourgarel, D., Falcone, C., Ferrero, I. I., . . . Zeeman, A. M. (2000). Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb Technol, 26(9-10), 771-780. doi:10.1016/s0141-0229(00)00170-8
    Crabtree, H. G. (1929). Observations on the carbohydrate metabolism of tumours. Biochem J, 23(3), 536-545. doi:10.1042/bj0230536
    de Boer, H. A., Comstock, L. J., & Vasser, M. (1983). The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A, 80(1), 21-25. doi:10.1073/pnas.80.1.21
    Diaz-Ruiz, R., Uribe-Carvajal, S., Devin, A., & Rigoulet, M. (2009). Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta, 1796(2), 252-265. doi:10.1016/j.bbcan.2009.07.003
    Dominguez, A., Ferminan, E., Sanchez, M., Gonzalez, F. J., Perez-Campo, F. M., Garcia, S., . . . Lopez, M. C. (1998). Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol, 1(2), 131-142. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10943351
    Gancedo, J. M. (1998). Yeast carbon catabolite repression. Microbiol Mol Biol Rev, 62(2), 334-361. doi:10.1128/MMBR.62.2.334-361.1998
    Goffrini, P., Wesolowski-Louvel, M., Ferrero, I., & Fukuhara, H. (1990). RAG1 gene of the yeast Kluyveromyces lactis codes for a sugar transporter. Nucleic Acids Res, 18(17), 5294. doi:10.1093/nar/18.17.5294
    Hahn-Hagerdal, B., Hallborn, J., Jeppsson, H., Meinander, N., Walfridsson, M., Ojamo, H., . . . Zimmermann, F. K. (1996). Redox balances in recombinant Saccharomyces cerevisiae. Ann N Y Acad Sci, 782, 286-296. doi:10.1111/j.1749-6632.1996.tb40569.x
    Horak, J. (2013). Regulations of sugar transporters: insights from yeast. Curr Genet, 59(1-2), 1-31. doi:10.1007/s00294-013-0388-8
    Karhumaa, K., Wu, B., & Kielland-Brandt, M. C. (2010). Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae. J Cell Biochem, 110(4), 920-925. doi:10.1002/jcb.22605
    Kotyk, A., & Kleinzeller, A. (1967). Affinity of the yeast membrane carrier for glucose and its role in the Pasteur effect. Biochim Biophys Acta, 135(1), 106-111. doi:10.1016/0005-2736(67)90012-0
    Milkowski, C., Krampe, S., Weirich, J., Hasse, V., Boles, E., & Breunig, K. D. (2001). Feedback regulation of glucose transporter gene transcription in Kluyveromyces lactis by glucose uptake. J Bacteriol, 183(18), 5223-5229. doi:10.1128/JB.183.18.5223-5229.2001
    Moriya, H., & Johnston, M. (2004). Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci U S A, 101(6), 1572-1577. doi:10.1073/pnas.0305901101
    Mortimer, R. K., & Johnston, J. R. (1986). Genealogy of principal strains of the yeast genetic stock center. Genetics, 113(1), 35-43. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3519363
    Newcomb, L. L., Diderich, J. A., Slattery, M. G., & Heideman, W. (2003). Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryot Cell, 2(1), 143-149. doi:10.1128/EC.2.1.143-149.2003
    Ozcan, S., Dover, J., & Johnston, M. (1998). Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J, 17(9), 2566-2573. doi:10.1093/emboj/17.9.2566
    Ozcan, S., & Johnston, M. (1999). Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev, 63(3), 554-569. doi:10.1128/MMBR.63.3.554-569.1999
    Ozier-Kalogeropoulos, O., Malpertuy, A., Boyer, J., Tekaia, F., & Dujon, B. (1998). Random exploration of the Kluyveromyces lactis genome and comparison with that of Saccharomyces cerevisiae. Nucleic Acids Res, 26(23), 5511-5524. doi:10.1093/nar/26.23.5511
    Partow, S., Siewers, V., Bjorn, S., Nielsen, J., & Maury, J. (2010). Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast, 27(11), 955-964. doi:10.1002/yea.1806
    Polish, J. A., Kim, J.-H., & Johnston, M. (2005). How the Rgt1 Transcription Factor of Saccharomyces cerevisiae Is Regulated by Glucose. Genetics, 169(2), 583-594. doi:10.1534/genetics.104.034512
    Rajaei, N. (2015). Regulation and mechanism of mating-type switching in Kluyveromyces lactis. Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm …,
    Reifenberger, E., Boles, E., & Ciriacy, M. (1997). Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem, 245(2), 324-333. doi:10.1111/j.1432-1033.1997.00324.x
    Reifenberger, E., Freidel, K., & Ciriacy, M. (1995). Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol, 16(1), 157-167. doi:10.1111/j.1365-2958.1995.tb02400.x
    Sicard, D., & Legras, J. L. (2011). Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol, 334(3), 229-236. doi:10.1016/j.crvi.2010.12.016
    Siso, M. G., Ramil, E., Cerdán, M., & Freire-Picos, M. (1996). Respirofermentative metabolism in Kluyveromyces lactis: ethanol production and the Crabtree effect. Enzyme and Microbial Technology, 18(8), 585-591.
    Steensma, H. Y., de Jongh, F. C. M., & Linnekamp, M. (1988). The use of electrophoretic karyotypes in the classification of yeasts: Kluyveromyces marxianus and K. lactis. Current Genetics, 14(4), 311-317. doi:10.1007/BF00419987
    Steiner, S., & Philippsen, P. (1994). Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol Gen Genet, 242(3), 263-271. doi:10.1007/BF00280415
    Tiukova, I. A., Moller-Hansen, I., Belew, Z. M., Darbani, B., Boles, E., Nour-Eldin, H. H., . . . Borodina, I. (2019). Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast Brettanomyces bruxellensis. FEMS Microbiol Lett, 366(17). doi:10.1093/femsle/fnz222
    Trumbly, R. J. (1992). Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol, 6(1), 15-21. doi:10.1111/j.1365-2958.1992.tb00832.x
    Turcotte, B., Liang, X. B., Robert, F., & Soontorngun, N. (2010). Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res, 10(1), 2-13. doi:10.1111/j.1567-1364.2009.00555.x
    Van Urk, H., Voll, W. S., Scheffers, W. A., & Van Dijken, J. P. (1990). Transient-state analysis of metabolic fluxes in crabtree-positive and crabtree-negative yeasts. Appl Environ Microbiol, 56(1), 281-287. doi:10.1128/aem.56.1.281-287.1990
    Wésolowski-Louvel, M., Breunig, K. D., & Fukuhara, H. (1996). Kluyveromyces lactis. In Nonconventional yeasts in biotechnology (pp. 139-201): Springer.
    Weirich, J., Goffrini, P., Kuger, P., Ferrero, I., & Breunig, K. D. (1997). Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis. Eur J Biochem, 249(1), 248-257. doi:10.1111/j.1432-1033.1997.t01-1-00248.x
    Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P., & Boles, E. (1999). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett, 464(3), 123-128. doi:10.1016/s0014-5793(99)01698-1
    Wright, M. C., & Philippsen, P. (1991). Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene, 109(1), 99-105. doi:10.1016/0378-1119(91)90593-z

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE