| 研究生: |
朱宇光 Chu, Yu-Kuang |
|---|---|
| 論文名稱: |
案場反射材料對雙面太陽能電池模組效率影響及投資效益評估 Efficiency and Investment Evaluation of Bifacial PV Module with Different Reflection Materials |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 雙面太陽能 、反射材料 、效益 、工程經濟 |
| 外文關鍵詞: | bifacial pv, reflective material, efficiency, engineering economy |
| 相關次數: | 點閱:83 下載:33 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能發電是目前國家綠能發展中的主角,而屋頂型太陽能是近年推廣的重點項目,在2022大用電戶要有自身用電量10%綠能發電的政策下,科學園區內的各大公司無不卯足全力開始進行太陽能電廠的興建,本篇會就南科群創光電三廠以導入雙面太陽能為前提下,探討如何使雙面太陽能模組單位面積發電效能最大化。
本研究使用的雙面太陽模組好處就是對於無大量面積可架設的廠家而言,能使得單位面積產出更多的電能,進而達到國家後續法規標準,而雙面太陽能模組背面的發電量取決於接收到由案場地面所反射出來的光,所以設置案場的材料所產生的光源反射率好壞就會大大影響發電量,本研究就會以業界常用的幾種建材來量測它們的反射率與發電量多寡。
除了反射率與發電量實際量測外,也使用了類神經學習模擬出全年度的發電量,最後加入工程經濟學中的淨現值法及現值指數法來作後續的效益評估計算,相較與業界常用的投資報酬率評估方式有所不同,工程經濟囊括對於產業界實際上會面臨到的較細微的成本因素,這些因素可能都會大大影響最後評估出來的效益。本次模擬的結果顯示在發電量與設置成本雙方面考量下,以現地材料作為雙面太陽能案場經濟效益最高,草地作為案場的效益次之,然而在考量到後續法規鬆綁及環保議題下,草地最有前景。本次結果將可提供對於後續需要架設屋頂型雙面太陽能的廠家,在最大發電量及最低成本上如何取得平衡作為參考。
Solar power is the protagonist in the country's green energy development, and Roof PV Systems is a key project promoted in recent years. In 2020, under the policy the major electricity users should consume 10% of their own electricity for enerey generation. All major companies have started the construction of solar power plants with all their strength. This article will discuss how to maximize the power generation efficiency per unit area of bifacial solar modules on the premise of introducing bifacial solar energy in the third factory of Innolux in Tainan.
The advantage of the bifacial solar module used in this research is that for manufacturers without a large area to be erected.It can produce more electricity per unit area.Thereby attaning follow-up the national regulations and standards, while the power generation on the back of the bifacial solar module Depending on the received sunlight reflected from the ground of the case.The reflectivity of the light source generated by the material of the case field will greatly affect the power generation. In this research, several building materials commonly used in the industry will be used to measure their reflectivity and power generation.
In addition to the actual measurement of reflectivity and power generation, neural network learning is also used to simulate the annual power generation, and finally the Net Present worth Criterion and the Benefit/Cost Ratio in engineering economics are used to evaluate benefit.Compared with the Investment commonly used in the industry, the engineering economy includes the more subtle cost factors that the industry will actually face, and these factors may be significant to affect the final estimated benefit. Considering both of power generation and construction cost, using on-site materials as a bifacial solar project will get the highest economic benefit in the results of simulation, followed by grassland as a project. However, considering the subsequent loosening of regulations and environmental protection issues, the grassland is the most development prospect.The results of this research will provide a reference how to balance the maximum power generation and the lowest cost for whom need to erect roof pv systemwith with bifacial solar in the future.
[1] 經濟部能源局,發電裝置容量,[Online]. Available: https://www.esist.org.tw/Database/List?PageId=4.
[2] 行政函示:經濟部109年經能字第10904606910號令。
[3] 財團法人台灣建築中心,109年4月22日修正發布綠建築標章申請認可評定及使用作業要點,[Online]. Available: http://gb.tabc.org.tw/modules/filelist/index.php/main/flist/1.
[4] 行政函示:台南市府法規字第1090329198A號令。
[5] 行政函示:內政部111年台內建研字第1107638144號令。
[6] M. Z. Anam, M. Mahazabeen, M. Islam, “Performance Assessment of Bi-facial PV Module Considering Cloud & Albedo s,”in Proc.of 2020 11th International Conference on Electrical and Computer Engineering (ICECE), Dec. 2020.
[7] R. Bailey, P. Keelin, R. Perez, J. Robinson, G. Bender, and J. Chard, “Investigations of Site-Specific, Long Term Average Albedo Determination for Accurate Bifacial System Energy Modeling,” in Proc. of IEEE 46th Photovoltaic Specialists Conference, 2019, pp. 2268-74.
[8] J. E. Castillo-Aguilella, and P. S. Hauser, “Multi-Variable Bifacial Photovoltaic Module Test Results and Best-Fit Annual Bifacial Energy Yield Model,” IEEE Access, vol. 4, pp. 498-506, Mar. 2018.
[9] A. Baloch, M. Armoush, B. Hindi, A. Bousselham, and N. Tabet, “Performance Assessment of Stand Alone Bifacial Solar Panel Under Real Time Conditions,” in Proc. of 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp. 1058-61.
[10] A. Anjum, A. H. Tanveer, M. K. Sikder, A. Arefin, M. Islam, and Md. M. Rahman, “Bifacial Module Based Multilevel Solar Panel System: A Comparative Study,” in Proc. of 2020 IEEE Region 10 Symposium (TENSYMP), 2020, pp. 324-27.
[11] 呂宗昕(民98)。全面進攻奈米科技與太陽能電池。頁100-110。台北市:天下文化。
[12] 宋金蓮、趙慧、林珊、趙海波(民98)。太陽能發電原理與應用。頁86-87、60-62。台北市:五南
[13] D. Liao, Z. Huang, Y. Lu, ”Optimization of Solar Radiation Model for Bifacial PV Modules,” Acta Photonica Sinica, vol. 50, March. 2021.
[14] U. A. Yusufoglu, T. M. Pletzer, L. J. Koduvelikulathu, ”Analysis of the annual performance of bifacial modules and optimization method,” IEEE Journal of Photovoltaics, pp. 320-328, Jun. 2015.
[15] I. Shoukry, J. Libal, R. Kopecek, ”Modelling of bifacial gain for stand-alone and in-field installed bifacial PV modules,” Energy Procedia, pp. 600-608, 2016.
[16] 詹智龍(民102)。工程經濟入門導引。頁4-8、239-40。台中市:滄海。