| 研究生: |
李齊 LI, QI |
|---|---|
| 論文名稱: |
以分層電化學沉積製備陣列式CuInSe2薄膜應用於光導體之研究 Study of Array Structure CuInSe2 Thin Films Photoconductor with Layered Electrodeposition |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 分層電化學沉積 、二硒化銅銦 、陣列結構 、光導體 |
| 外文關鍵詞: | layered electrodeposition, CuInSe2, array structure, photoconductor |
| 相關次數: | 點閱:2461 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用SiO2模板圖案定義陣列區域,並以恆定電流之分層電化學沉積製備不同Cu/In比例之陣列式CuInSe2薄膜於鉬(Mo)-鈉鈣玻璃(SLG)上,接著在CuInSe2薄膜上方濺鍍Al金屬形成Al/CuInSe2/Mo-glass光導體。相較以往大面積結構相比,陣列式結構擁有更高的靈敏度與均勻性,在影像辨識方面可以獲得高對比度的清晰圖像。
陣列區域使用光微影流程,將SiO2模板圖案定義在鉬金屬層上,製作之SiO2模板厚度約700nm,圓形孔洞直徑為0.2cm。CuInSe2薄膜在熱退火溫度500℃下的FWHM為0.76,晶粒大小為10.73nm,而能隙大小為1.06eV,符合CuInSe2薄膜材料特性之理論值。此外,Cu/In<1之陣列式CuInSe2薄膜光導體在順偏+0.4V下之光響應度最高可達9.2A/W,檢測率達1.22×1010 Jones,明顯有效提升光電特性,而光電均勻度特性以Cu/In<1與Cu/In>1較為理想。
This research uses a SiO2 template pattern to define the array area, and the array structure CuInSe2 thin films with different Cu/In ratios are prepared on molybdenum soda-lime glass (SLG) by layered electrodeposition with constant current. Then, Al metal is sputtered on the CuInSe2 thin films to form the Al/CuInSe2/Mo-glass photoconductor. Compared with large-area structures, the array structure has higher sensitivity and uniformity and can obtain a clear image of the target object with a high contract in image recognition.
The array area uses a photolithography process to define the SiO2 template pattern on the molybdenum metal layer. The thickness of the produced SiO2 template is 700nm and the diameter of the circular hole is 0.2cm. The FWHM of CuInSe2 thin film is 0.76 and the grain size is 10.73nm at rapid thermal annealing temperature of 500℃. The CuInSe2 thin films energy gap is 1.06eV so it conforms to the material properties of CuInSe2. The responsivity of the array structure CuInSe2 thin film photoconductor with Cu/In<1 can reach up to 9.2A/W, and the detectivity can reach 1.22×1010Jones under forward bias +0.4V, which can significantly improve the photoelectric properties. For the photoelectric uniformity, Cu/In<1 and Cu/In>1 are ideal.
[1] S. Du et al., "A broadband fluorographene photodetector," Advanced Materials, vol. 29, no. 22, p. 1700463, 2017.
[2] S. M. Sze, Semiconductor devices: physics and technology. John wiley & sons, 2008.
[3] A. McEvoy, L. Castaner, and T. Markvart, Solar cells: materials, manufacture and operation. Academic Press, 2012.
[4] B. J. Stanbery, "Copper indium selenides and related materials for photovoltaic devices," Critical reviews in solid state and materials sciences, vol. 27, no. 2, pp. 73-117, 2002.
[5] W. Eisele et al., "New cadmium-free buffer layers as heterojunction partners on Cu (In, Ga)(S, Se)/sub 2/thin film solar cells," in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No. 00CH37036), 2000: IEEE, pp. 692-695.
[6] P. Jackson et al., "New world record efficiency for Cu (In, Ga) Se2 thin‐film solar cells beyond 20%," Progress in Photovoltaics: Research and Applications, vol. 19, no. 7, pp. 894-897, 2011.
[7] M. Gossla, H. Metzner, and H.-E. Mahnke, "Coevaporated Cu–In films as precursors for solar cells," Journal of applied physics, vol. 86, no. 7, pp. 3624-3632, 1999.
[8] K. R. Reddy, I. Forbes, R. Miles, M. Carter, and P. Dutta, "Growth of high-quality CuInSe2 films by selenising sputtered Cu–In bilayers using a closed graphite box," Materials Letters, vol. 37, no. 1-2, pp. 57-62, 1998.
[9] M. Ramasamy, C.-Y. Jung, Y.-B. Yeon, and C.-W. Lee, "Electrochemical atomic layer deposition of Cuin (1-x) GaxSe2 on Mo substrate," Journal of The Electrochemical Society, vol. 164, no. 14, p. D1006, 2017.
[10] D. Siopa et al., "Micro-sized thin-film solar cells via area-selective electrochemical deposition for concentrator photovoltaics application," Scientific reports, vol. 10, no. 1, pp. 1-13, 2020.
[11] J. L. Gray, R. Schwartz, and Y. J. Lee, "NUMERICAL MODELING OF CuInSe2 AN D CdTe SOLAR CELLS," 1994.
[12] R. Noufi, R. Axton, C. Herrington, and S. Deb, "Electronic properties versus composition of thin films of CuInSe2," Applied Physics Letters, vol. 45, no. 6, pp. 668-670, 1984.
[13] C. J. Sheppard, "Formation of CuIn (Se, S) 2 and Cu (In, Ga)(Se, S) 2 Thin Films by Chalcogenization of Sputtered Metallic Alloys," University of Johannesburg, 2008.
[14] J. Müller, J. Nowoczin, and H. Schmitt, "Composition, structure and optical properties of sputtered thin films of CuInSe2," Thin Solid Films, vol. 496, no. 2, pp. 364-370, 2006.
[15] T. Terasako, S. Inoue, T. Kariya, and S. Shirakata, "Three-stage growth of Cu–In–Se polycrystalline thin films by chemical spray pyrolysis," Solar energy materials and solar cells, vol. 91, no. 12, pp. 1152-1159, 2007.
[16] C. Guillén and J. Herrero, "Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors," Solar energy materials and solar cells, vol. 73, no. 2, pp. 141-149, 2002.
[17] S. Grindle, A. Clark, S. Rezaie‐Serej, E. Falconer, J. McNeily, and L. Kazmerski, "Growth of CuInSe2 by molecular beam epitaxy," Journal of Applied Physics, vol. 51, no. 10, pp. 5464-5469, 1980.
[18] S. Zhang, S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, "Defect physics of the CuInSe 2 chalcopyrite semiconductor," Physical Review B, vol. 57, no. 16, p. 9642, 1998.
[19] A. Brenner, Electrodeposition of alloys: principles and practice. Elsevier, 2013.
[20] 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
[21] X. Gong et al., "High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm," Science, vol. 325, no. 5948, pp. 1665-1667, 2009.
[22] D. Braunger, D. Hariskos, G. Bilger, U. Rau, and H. Schock, "Influence of sodium on the growth of polycrystalline Cu (In, Ga) Se2 thin films," Thin Solid Films, vol. 361, pp. 161-166, 2000.
[23] M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, and H. Schock, "Influence of substrates on the electrical properties of Cu (In, Ga) Se2 thin films," Solar Energy Materials and Solar Cells, vol. 41, pp. 335-343, 1996.
[24] T. Vink, M. Somers, J. Daams, and A. Dirks, "Stress, strain, and microstructure of sputter‐deposited Mo thin films," Journal of Applied Physics, vol. 70, no. 8, pp. 4301-4308, 1991.
[25] 葉文冠, 陳柏穎, and 翁俊仁, 積體電路製程技術與品質管理. 台灣: 東華書局, 2011.
[26] 陳譽升, "以分層電鍍銅銦硒薄膜製備二硒化銅銦太陽能電池之研究," 2009.
[27] A. Gobeaut, L. Laffont, J.-M. Tarascon, L. Parissi, and O. Kerrec, "Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films," Thin Solid Films, vol. 517, no. 15, pp. 4436-4442, 2009.
[28] A. T. S.r.l. (2019). Magnetron Sputtering [Online]. Available: https://www.alcatechnology.com/en/blog/magnetron-sputtering/.
[29] M. Uo, T. Wada, and T. Sugiyama, "Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens," Japanese Dental Science Review, vol. 51, no. 1, pp. 2-9, 2015.
[30] B. D. Cullity, Elements of X-ray Diffraction. Addison-Wesley Publishing, 1956.
[31] L. ENLI TECHNOLOGY CO. 太陽光模擬器基礎 [Online] Available: https://img1.wsimg.com/blobby/go/d9cbb170-6f7f-4ed0-b573-c965ac41b13b/Enli%20Tech_%E4%B8%80%E4%B8%8B%E5%B0%B1%E6%87%82%EF%BC%81%E5%A4%AA%E9%99%BD%E5%85%89%E6%A8%A1%E6%93%AC%E5%99%A8%E5%8E%9F%E7%90%86%E7%B0%A1%E4%BB%8B.pdf
[32] M. Zhong et al., "Flexible photodetectors based on phase dependent PbI 2 single crystals," Journal of Materials Chemistry C, vol. 4, no. 27, pp. 6492-6499, 2016.
[33] L. Li et al., "Ternary Ta2NiSe5 flakes for a high‐performance infrared photodetector," Advanced Functional Materials, vol. 26, no. 45, pp. 8281-8289, 2016.
[34] M. Shkir, M. T. Khan, I. Ashraf, A. Almohammedi, E. Dieguez, and S. AlFaify, "High-performance visible light photodetectors based on inorganic CZT and InCZT single crystals," Scientific reports, vol. 9, no. 1, pp. 1-9, 2019.