簡易檢索 / 詳目顯示

研究生: 楊君賢
Yang, Jun-Xian
論文名稱: 具機構耦合之雙線性伺服系統鑑別與控制
The Identification and Control of a Twin Linear Servo System with Mechanical Coupling
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 76
中文關鍵詞: 線性馬達雙線性伺服系統雙軸同動
外文關鍵詞: synchronous control, DSP-based, Box-in-Box
相關次數: 點閱:148下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今CNC工具機的控制發展趨勢,主要在於追求如何實現高速、高加工精度,直驅式線性馬達也就成為高速高精度工具機所不可或缺的重要驅動原件。而未來工具機應用場合中,在高速高推力及機構剛性的考量下,將採用以Box-in-Box箱體的機構設計為主,其特點為單一運動軸需要平行雙線性馬達來驅動,即具機構耦合之雙線性伺服系統,而雙軸同動控制實為關鍵技術。
    本論文主要探討高速高精度之雙軸線性伺服系統設計,針對雙軸同動問題提出一可達到高速高精度之控制架構,並以DSP-based的控制平台實現雙平行軸線性馬達之同動追蹤控制。在機構剛性及定位精度考量下,為了有效達到良好之控制性能,本研究提出具實用性的系統餞別技術,並將耦合機構動態特性引入控制系統設計中,結合主從控制概念及負載動態補償,進而實現高速、高精度的雙線性伺服系統控制。

    The development of CNC machines has a strong trend toward performance of high speed and high precision, in that direct-drive linear motors have become an important driving actuator for the servo systems. Due to the requirement of high thrust and mechanism rigidity, the ‘Box-in-Box’ structure is gaining its advantage in which two parallel linear motors are physically coupled with a mechanism to realize one-degree movement.
    This thesis presents the controller design of a servo system formed by two parallel linear motors with a saddle striding that couples these two servomotors. To control the mechanically coupling system, a system identification method is first adopted to obtain the dynamic model of the controlled multivariable system and then a control scheme for two objectives is proposed for high-speed synchronous control, The synchronous controller is designed and implemented in real-time using a DSP-based control platform, The results exhibit that the demands of high speed and high precision can be effectively achieved.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅴ 圖表目錄 Ⅶ 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 6 1.3 硬體耦合系統介紹與控制議題之探討 12 第二章 系統鑑別 14 2.1 個別線性馬達系統鑑別 17 2.2 具硬體耦合之雙線性伺服系統量測 19 第三章 控制策略 26 3.1 前言 26 3.1.1 動態變形力補償……………………………………………………. 27 3.1.2 速度命令前饋控制器之設計………………………………………. 32 3.2 負載動態補償……………………………………………………………….. 35 第四章 模擬與分析………………………………………………… 38 4.1 S-curve曲線命令之設計……………………………………………………. 38 4.2 硬體耦合雙線性馬達同動控制模擬……………………………………….. 41 4.2.1 同動控制模擬………………………………………………………. 41 4.2.2 動態變形力補償之模擬……………………………………………. 44 4.2.3 速度前饋模擬………………………………………………………. 45 4.3 X軸變動負載模擬………………………………………………………….. 46 第五章 實驗結果…………………………………………………… 51 5.1 實驗軟硬體設備…………………………………………………………….. 52 5.1.1 軟體設備……………………………………………………………. 52 5.1.2 硬體設備……………………………………………………………. 54 5.2 雙線性馬達硬體耦合實驗………………………………………………….. 58 5.3 負載動態補償實驗………………………………………………………….. 60 第六章 結論與建議………………………………………………… 62 參考文獻……………………………………………………………… 64 附錄A………………………………………………………………… 68 附錄B………………………………………………………………… 71

    [1] D. M. Alter, T. C. Tsao, “Optimal feedforward tracking control of linear
    motors for machine tool drives,” American Control Conference, vol. 1,
    pp. 210-214, 1995.

    [2] P. K. Budig, “The application of linear motors,” Power Electronics and
    Motion Control Conference, vol. 3, pp. 1336-1341, 2000.

    [3] D. de Roover, F.B. Sperling, O.H. Bosgra, “Point-to-point control of a
    MIMO servomechanism,” American Control Conference, vol. 5, pp.
    2648-2651, 1998.

    [4] FANUC, Parameter Manual of α-series AC Servo Motor, FANUC, 1994.

    [5] Hewlett Packard Technical Staff, HP3563A Operating Manual, Hewlett
    Packard, 1990

    [6] Hewlett Packard Technical Staff, 控制迴路測試系統及應用,Hewlett Packard,
    1990.

    [7] S. Kikuchi, T. Furukawa, and K. Murakami, “Some methods for improving
    the performance characteristics of a parametric linear motor,” IEEE
    Transactions on Magnetics, vol. 23, pp. 2844-2846, 1987.

    [8] S. Komada, M. Ishida, K. Ohnishi, T. Hori, “Motion control of linear
    synchronous motors based on disturbance observer,” IEEE IECON, vol. 1,
    pp. 154-159, 1990.

    [9] S. Komada, M. Ishida, K. Ohnishi, and T. Hori, “Disturbance
    observer-based motion control of direct drive motors,” IEEE Transactions
    on Energy Conversion, vol. 6, pp. 553-559, 1991.

    [10] I. Kollar, Frequency Domain Identification Toolbox-For use with MATLAB,
    The MATH WORKS Inc., 1994.

    [11] R. D. Lorenz and P. B. Schmidt, “Synchronized motion control for process
    automation,” IEEE Conference on Industry Applications Society Annual
    Meeting, vol. 2, pp.1693-1698, 1989.

    [12] N. Locci, I. Marongiu, A. Pergetto, and A. Serri, “Electronic control of
    a linear reluctance motor,” Fifth European Conference on Power
    Electronics and Applications, vol. 6, pp. 59-64, 1993.

    [13] G. W. McLean, “Review of recent progress in linear motors,” IEE
    Proceedings-Electric Power Applications, vol. 135, pp. 380-416, 1988.

    [14] H. Miyagawa, A. Yamamoto, S. Futami, T. Sumimoto, S. Goto, M. Nakamura,
    “Control method of linear motor drive table using observer for the
    vibration repression,” Proceedings of the 39th SICE Annual Conference,
    pp. 101-106, 2000.

    [15] G. Otten, T. J. A. de Vries, J. van Amerongen, A. M. Rankers, and E. W.
    Gaal, “Linear motor motion control using a learning feedforward
    controller,” IEEE/ASME Transactions on Mechatronics, vol. 2, pp.179-187,
    1997.

    [16] S. Refaat, S. Nahavandi, “Reducing position error of cantilevered loads
    in motion systems,” IEEE International Conference on Systems, Man, and
    Cybernetics, vol. 5, pp. 3175-3180, 2001.

    [17] SIEMENS, 840D/FM-NC Description of functions, special Functions (Part 3),
    SIEMENS, 1999.

    [18] S. M. Jang, S. S. Jeong, S. H. Lee. I. K. Yoon, “Design, analysis, and
    manufacture of large linear motor damper for structure vibration control
    system”, IEEE International Conference on Magnetics, pp. 429-429, 2002.

    [19] M. S. W. Tam and N. C. Cheung, “A high speed high precision linear drive
    system for manufacturing automation,” Applied Power Electronics
    Conference and Exposition, vol. 1, pp.440-444, 2001.

    [20] F. Y. Wong, H. Schulze-Lauen, and K. Youcef-Toumi, “Modelling and igital
    servo control of a two-axis linear motor,” American Control Conference,
    vol. 5, pp. 3659-3663, 1995.

    [21] Yokogawa Precision Corporation, LINEARSERV Instruction Manual, Yokogawa
    Precision Corporation, 1998.

    [22] 工業技術研究院機械工業研究所,PMC32韌體開發技術手冊,工業技術研究院,民國
    九十年。

    [23] 工業技術研究員機械工業研究所,PMC32-600/6000使用手冊,工業技術研究院民國
    九十年。

    [24] 王栢村,震動學,全華圖書,民國八十六年。

    [25] 石世雄,黃瑞志,黃繼震,陳盛基,魯肇爛,許覺良,“線性馬達驅動工具機研製
    技術與發展,” Motor Express,第七期,馬達科技研究中心。

    [26] 李宜達,控制系統設計與模擬。台北:全華圖書,民國八十七年。

    [27] 李勝源,結構系統動態行為之系統建模與識別,碩士論文,國立中央大學機械工程
    學系,民國八十九年。

    [28] 邱益範,命令及摩擦力前饋控制於工具機之研究,碩士論文,國立成功大學機械工
    程學系,民國九十二年。

    [29] 洪錦魁,Turbo C 入門與應用徹底剖析。台北:松岡圖書,民國八十二年。

    [30] 姚武松,高速工具機之線性伺服系統設計,博士論文,國立成功大學機械工程學
    系,民國九十一年。

    [31] 張道弘,PID控制理論與實務,全華圖書,民國八十四年。

    [32] 張碩編著,自動控制系統,台北:鼎茂圖書,民國八十六年。

    [33] 張智星,MATLAB程式設計與應用,清蔚科技,民國八十九年。

    [34] 張智星,MATLAB程式設計與應用,新竹:清蔚科技,民國八十九年。

    [35] 葉云岳,直線電動機原理與應用,大陸浙江:機械工業出版社,2000年。

    [36] 楊憲東,精密機械運動控制原理及模擬,全華圖書,民國八十七年。

    [37] 楊君賢,線性馬達之精密運動控制,大專生參與專題研究計劃成果報告,國立成功
    大學機械工程學系,民國九十年。

    [38] 楊文螢,“先進線型工具機技術整合性計畫介紹,” 工程雙月刊,第七十六卷第一
    期,pp. 11-21,2003年。

    [39] 趙清風,使用MATLAB控制之系統鑑別,全華圖書,民國九十年。

    [40] 蕭子健,儲昭偉,王智昱,LABVIEW進階篇,高立圖書,民國九十年。

    下載圖示 校內:立即公開
    校外:2003-07-17公開
    QR CODE