| 研究生: |
劉欣怡 Liu, Hsin-I |
|---|---|
| 論文名稱: |
透過抗發炎、抗氧化及抗腫瘤促進作用評估硫辛酸在化學預防上可能扮演的角色 The possible role of alpha-lipoic acid in chemoprevention through anti-inflammation, anti-oxidation, and anti-tumor promotion |
| 指導教授: |
王應然
Wang, Ying-Jan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 癌症化學預防 、二氫硫辛酸 、硫辛酸 、發炎反應 、腫瘤促進作用 、氧化性壓力 、癌症轉移 |
| 外文關鍵詞: | tumor promotion, oxidative stress, metastasis, Alpha-lipoic acid (LA), inflammation, cancer chemoprevention, dihydrolipoic acid (DHLA) |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症的化學預防就是利用萃取天然物或人工合成的化合物去阻斷、回復或預防癌症的發展。近年來,許多流行病學及動物研究已發現,存在於飲食、藥草及植物中的微量化學物質具有相當多樣的藥理特性,有益於預防多種癌症的發生。硫辛酸(α-lipoic acid, LA)是細胞可自行少量產生的雙硫化合物,主要的作用為粒線體內pyruvate dehydrogenase的輔酶,為生物膜維持正常功能的組成要素,且是一種強力的抗氧化劑及自由基清除者。而LA的還原態二氫硫辛酸(dihydrolipoic acid, DHLA)在研究中更被發現較LA擁有更好的抗氧化能力。已知許多疾病成因皆與氧化性壓力的產生有關,如:老化、癌症、發炎等。發炎反應易導致免疫相關細胞的趨化作用,進而造成ROS的產生,導致氧化性傷害。而在多步驟的致癌過程中,氧化性壓力亦已被證實在各階段均扮演很重要的角色。雖然許多研究證實LA有助於許多氧化性壓力相關疾病的治療,但是對於LA是否具有癌症預防潛能的研究,無論在體內及體外實驗仍缺乏。
本研究試圖以體外實驗將小鼠巨噬細胞RAW264.7處理內毒素(lipopolysaccharide, LPS),誘發產生一氧化氮(nitric oxide, NO)和前列腺素E2(prostaglandin E2, PGE2),並以西方墨點法測定誘發型一氧化氮合成酶(inducible NO synthase, iNOS)及環氧酶(cyclooxygenase type-2, COX-2)的蛋白表現,評估個別加入LA及DHLA的抗發炎能力。體內實驗以ICR小鼠皮膚處理TPA模式,產生發炎反應及氧化性壓力(priming和/或activation)與誘發腫瘤形成,藉由評估水腫、上皮增厚及小鼠腫瘤發生率,驗證LA/DHLA抗發炎、抗氧化及抑制腫瘤促進作用的能力。並利用LLC-bearing mice實驗模式評估LA/DHLA抑制腫瘤生長及對抗肺轉移的能力。
結果顯示,LA及DHLA皆能有效抑制由LPS誘發RAW 264.7產生的NO及PGE2,西方墨點法則觀察到iNOS蛋白表現抑制,但COX-2蛋白表現卻明顯促進的情形。體內實驗則發現DHLA可對抗ICR小鼠重複處理TPA造成的發炎反應(白血球滲透(priming)及白血球的氧化性傷害(activation)),而達到抑制水腫及上皮增生的效果,LA則無抑制能力。皮膚前處理DHLA抑制ICR小鼠兩階段DMBA/TPA誘發產生腫瘤的實驗,顯示DHLA抗腫瘤促進作用的能力較Resveratrol好。以LLC-bearing mice實驗模式連續腹腔注射給藥33天顯示LA並無抑制腫瘤生長及對抗肺轉移的能力。
綜合上述結果,LA/DHLA在抗發炎、抗氧化及抗腫瘤促進作用方面有一定程度的效果,然而在抗腫瘤生長及抗轉移的能力方面並無顯著效果,因此,LA/DHLA在癌症化學預防上可能扮演的角色仍須更進一步的研究加以釐清。
Cancer chemoprevention is defined as interruption, recovery or prevention of cancer developing by natural occurring or synthetic compounds. In recent years, many epidemiological and animal studies have suggested that microchemicals present in the diet, herbs and plants with pharmacological properties are useful agents for the prevention of a wide variety of human cancers. Alpha-lipoic acid (LA) is a disulfide compound that is produced in small quantities in cells, and functions naturally as a co-enzyme in the pyruvate dehydrogenase. It is also a physiological constituent of biological membranes, an efficient antioxidant and a scavenger of free radicals. Dihydrolipoic acid (DHLA), formed by reduction of LA, has been shown to possess more antioxidant properties than does LA. Oxidative stress has been revealed to be related to several diseases such as aging, cancer and inflammation. Among these, reactive oxygen species(ROS)play a pivotal role in the process of inflammation and multiple step carcinogenesis. Several studies also showed that treatment of LA is beneficial for many diseases caused by oxidative damage. However, there are scanty data with respect to anti-tumorigenesis activity of LA.
In the present works, we conducted the in vitro anti-inflammatory study to assess the effects of LA/DHLA on nitric oxide (NO) and prostaglandin E2 (PGE2) generation in RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase type-2 (COX-2) proteins were assayed by western blotting. The in vivo short-term anti-inflammatory, anti-oxidative and long-term anti-tumor promoting activities of LA/DHLA were evaluated by topical TPA application to ICR mouse skin with measurement of edema formation, epidermal thickness, and incidence of tumor-bearing mice. In addition, the potency of anti-tumor growth and anti-metastasis of LA were also analyzed by using Lewis lung carcinoma-bearing mice experimental model.
We have demonstrated that LA and DHLA strongly suppressed the NO and PGE2 release in LPS-treated RAW264.7 cells. Western blot showedt down-regulation of iNOS, but up-regulation of COX-2 expression after treated with LA and DHLA in LPS-treated cells. In in vivo studies, we found that DHLA but not LA significantly inhibited skin inflammation induced by double TPA application by decreasing the edema and epidermal hyperplasia formation. Inhibitory effects of tumor promotion showed that DHLA possess higher anti-tumor promotic ability than the resveratrol in DMBA-initiated ICR mice. However, LA shows no inhibition effects of tumor growth and lung metastasis in LLC-bearing mice experimental model.
In summary, the data presented here indicate that LA/DHLA possess significant effects in anti-inflammation, anti-oxidation and anti-tumor promotion. Whereas, no effects were found in anti-tumor growth and anti-metastasis. Thus, more studies are needed to further elucidate the role of LA/DHLA in cancer chemoprevention.
Ahmad N. Srivastava RC. Agarwal R. Mukhtar H. Nitric oxide synthase and skin tumor promotion. Biochemical & Biophysical Research Communications. 232(2):328-31, 1997
Altenkirch H. Stoltenburg-Didinger G. Wagner HM. Herrmann J. Walter G. Effects of lipoic acid in hexacarbon-induced neuropathy. Neurotoxicology & Teratology. 12(6):619-22, 1990
Anonymous. Prevention of cancer in the next millennium: Report of the Chemoprevention Working Group to the American Association for Cancer Research. Cancer Research. 59(19):4743-58, 1999
Bennett A. Carroll MA. Stamford IF. Whimster WF. Williams F. Prostaglandins and human lung carcinomas. British Journal of Cancer. 46(6):888-93, 1982
Block G. Patterson B. Subar A. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutrition & Cancer. 18(1):1-29, 1992
Biewenga GP. Haenen GR. Bast A. The pharmacology of the antioxidant lipoic acid. General Pharmacology. 29(3):315-31, 1997
Bustamante, J., Lodge, J. K., Marcocci, L., Tritschler, H. J., Packer, L., and Rihn, B. H. Alpha-lipoic acid in liver metabolism and disease, Free Radical Biology & Medicine. 24: 1023-39, 1998
Chan G. Boyle JO. Yang EK. Zhang F. Sacks PG. Shah JP. Edelstein D. Soslow RA. Koki AT. Woerner BM. Masferrer JL. Dannenberg AJ. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Research. 59(5):991-4, 1999
Chin K. Kurashima Y. Ogura T. Tajiri H. Yoshida S. Esumi H. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene. 15(4):437-42, 1997
Clancy R. Varenika B. Huang W. Ballou L. Attur M. Amin AR. Abramson SB. Nitric oxide synthase/COX cross-talk: nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. Journal of Immunology. 165(3):1582-7, 2000
DuBois RN. Radhika A. Reddy BS. Entingh AJ. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology. 110(4):1259-62, 1996
Elder DJ. Halton DE. Crew TE. Paraskeva C. Apoptosis induction and cyclooxygenase-2 regulation in human colorectal adenoma and carcinoma cell lines by the cyclooxygenase-2-selective non-steroidal anti-inflammatory drug NS-398. International Journal of Cancer. 86(4):553-60, 2000
Femiano F. Scully C. Burning mouth syndrome (BMS): double blind controlled study of alpha-lipoic acid (thioctic acid) therapy. Journal of Oral Pathology & Medicine. 31(5):267-9, 2002
Fischer SM. Lo HH. Gordon GB. Seibert K. Kelloff G. Lubet RA. Conti CJ. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Molecular Carcinogenesis. 25(4):231-40, 1999
Greenamyre JT. Garcia-Osuna M. Greene JG. The endogenous cofactors, thioctic acid and dihydrolipoic acid, are neuroprotective against NMDA and malonic acid lesions of striatum. Neuroscience Letters. 171(1-2):17-20, 1994
Guillausseau PJ. Preventive treatment of diabetic microangiopathy: blocking the pathogenic mechanisms. Diabete et Metabolisme. 20(2 Pt 2):219-28, 1994
Guo Q. Tirosh O. Packer Q. Inhibitory effect of α-lipoic acid and its positively charged amide analogue on nitric oxide production in RAW264.7 macrophages. Biochemical Pharmacology. 61:547-54, 2001
Gurer H. Ozgunes H. Oztezcan S. Ercal N. Antioxidant role of alpha-lipoic acid in lead toxicity. Free Radical Biology & Medicine. 27(1-2):75-81, 1999
Hagen TM. Ingersoll RT. Lykkesfeldt J. Liu J. Wehr CM. Vinarsky V. Bartholomew JC. Ames AB. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB Journal. 13(2):411-8, 1999
Handelman GJ. Han D. Tritschler H. Packer L. Alpha-lipoic acid reduction by mammalian cells to the dithiol form, and release into the culture medium. Biochemical Pharmacology. 47(10):1725-30, 1994
Harris RE. Alshafie GA. Abou-Issa H. Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Research. 60(8):2101-3, 2000
Hida T. Yatabe Y. Achiwa H. Muramatsu H. Kozaki K. Nakamura S. Ogawa M. Mitsudomi T. Sugiura T. Takahashi T. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Research. 58(17):3761-4, 1998
Hirvonen MR. Brune B. Lapetina EG. Heat shock proteins and macrophage resistance to the toxic effects of nitric oxide. Biochemical Journal. 315 ( Pt 3):845-9, 1996
Ito H. Hasegawa K. Inaguma Y. Kozawa O. Asano T. Kato K. Modulation of the stress-induced synthesis of stress proteins by a phorbol ester and okadaic acid. Journal of Biochemistry. 118(3):629-34, 1995
Jacob S. Henriksen EJ. Schiemann AL. Simon I. Clancy DE. Tritschler HJ. Jung WI. Augustin HJ. Dietze GJ. Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneimittel-Forschung. 45(8):872-4, 1995
Jenkins DC. Charles IG. Thomsen LL. Moss DW. Holmes LS. Baylis SA. Rhodes P. Westmore K. Emson PC. Moncada S. Roles of nitric oxide in tumor growth. Proceedings of the National Academy of Sciences of the United States of America. 92(10):4392-6, 1995
Klaunig J.E. Xu Y. Isenberg J.S. Bachowski S. Kolaja KL. Jiang J. Stevenson DE. Walborg EF Jr. The role of oxidative stress in chemical carcinogenesis. Environmental Health Perspectives. 106 Suppl 1:289-95, 1998
Kimura Y. Baba K. Okuda H. Inhibitory effects of active substances isolated from Cassia garrettiana heartwood on tumor growth and lung metastasis in Lewis lung carcinoma-bearing mice (Part 1). Anticancer Research. 20(5A):2899-906, 2000
Kozaki K. Koshikawa K. Tatematsu Y. Miyaishi O. Saito H. Hida T. Osada H. Takahashi T. Multi-faceted analyses of a highly metastatic human lung cancer cell line NCI-H460-LNM35 suggest mimicry of inflammatory cells in metastasis. Oncogene. 20(31):4228-34, 2001.
Krishnan K. Ruffin MT 4th. Brenner DE. Chemoprevention for colorectal cancer. Critical Reviews in Oncology-Hematology. 33(3):199-219, 2000
Kundu N. Yang Q. Dorsey R. Fulton AM. Increased cyclooxygenase-2 (cox-2) expression and activity in a murine model of metastatic breast cancer. International Journal of Cancer. 93(5):681-6, 2001
Lahiri-Chatterjee M. Katiyar SK. Mohan RR. Agarwal R. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Research. 59(3):622-32, 1999
Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB Journal. 11(2):118-24, 1997
Li G. Yang T. Yan J. Cyclooxygenase-2 increased the angiogenic and metastatic potential of tumor cells. Biochemical & Biophysical Research Communications. 299(5):886-90, 2002
Lykkesfeldt J. Hagen TM. Vinarsky V. Ames BN. Age-associated decline in ascorbic acid concentration, recycling, and biosynthesis in rat hepatocytes--reversal with (R)-alpha-lipoic acid supplementation. FASEB Journal. 12(12):1183-9, 1998
Marangon K. Devaraj S. Tirosh O. Packer L. Jialal I. Comparison of the effect of alpha-lipoic acid and alpha-tocopherol supplementation on measures of oxidative stress. Free Radical Biology & Medicine. 27(9-10):1114-21, 1999
Moini H. Packer L. Saris NE. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicology & Applied Pharmacology. 182(1):84-90, 2002
Mordan LJ. Burnett TS. Zhang LX. Tom J. Cooney RV. Inhibitors of endogenous nitrogen oxide formation block the promotion of neoplastic transformation in C3H 10T1/2 fibroblasts. Carcinogenesis. 14(8):1555-9, 1993
Murakami A. Nakamura Y. Torikai K. Tanaka T. Koshiba T. Koshimizu K. Kuwahara S. Takahashi Y. Ogawa K. Yano M. Tokuda H. Nishino H. Mimaki Y. Sashida Y. Kitanaka S. Ohigashi H. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Research. 60(18):5059-66, 2000
Nagy I. Pogatsa-Murray G. Zalanyi S Jr. Komlosi P. Laszlo F. Ungi I. Amanita poisoning during the second trimester of pregnancy. A case report and a review of the literature. Clinical Investigator. 72(10):794-8, 1994
Nagamatsu M. Nickander KK. Schmelzer JD. Raya A. Wittrock DA. Tritschler H. Low PA. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 18(8):1160-7, 1995
Nakamura Y. Murakami A. Ohto Y. Torikai K. Tanaka T. Ohigashi H. Suppression of tumor promoter-induced oxidative stress and inflammatory responses in mouse skin by a superoxide generation inhibitor 1'-acetoxychavicol acetate. Cancer Research. 58(21):4832-9, 1998
Ohata T. Fukuda K. Murakami A. Ohigashi H. Sugimura T. Wakabayashi K. Inhibition by 1’-acetoxychavicolacetate of lipopolysaccharide- and interferon-γ-induced nitric oxide production through suppression of inducible nitric oxide synthase gene expression in RAW264 cells. 19(6):1007-12, 1998
Packer L. Witt EH. Tritschler HJ. Alpha-Lipoic acid as a biological antioxidant. Free Radical Biology & Medicine. 19(2):227-50, 1995
Peinado J. Sies H. Akerboom TP. Hepatic lipoate uptake. Archives of Biochemistry & Biophysics. 273(2):389-95, 1989
Plotzker R. Jensen DM. Payne JA. Case report. Amanita virosa acute hepatic necrosis: treatment with thioctic acid. American Journal of the Medical Sciences. 283(2):79-82, 1982
Podda M. Tritschler HJ. Ulrich H. Packer L. Alpha-lipoic acid supplementation prevents symptoms of vitamin E deficiency. Biochemical & Biophysical Research Communications. 204(1):98-104, 1994
Podda M. Zollner TM. Grundmann-Kollmann M. Thiele JJ. Packer L. Kaufmann R. Activity of alpha-lipoic acid in the protection against oxidative stress in skin. Current Problems in Dermatology. 29:43-51, 2001
Reddy BS. Hirose Y. Lubet R. Steele V. Kelloff G. Paulson S. Seibert K. Rao CV. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Research. 60(2):293-7, 2000
Rigas B. Goldman IS. Levine L. Altered eicosanoid levels in human colon cancer. Journal of Laboratory & Clinical Medicine. 122(5):518-23, 1993
Robertson FM. Long BW. Tober KL. Ross MS. Oberyszyn TM. Gene expression and cellular sources of inducible nitric oxide synthase during tumor promotion. Carcinogenesis. 17(9):2053-9, 1996
Rosenberg, H. R.; Culik, R. Effect of α-lipoic acid on vitamin C and vitamin E deficiencies. Arch. Biochem. Biophys. 80:86-93; 1959
Sabeel AI. Kurkus J. Lindholm T. Intensive hemodialysis and hemoperfusion treatment of Amanita mushroom poisoning. Mycopathologia. 131(2):107-14, 1995
Saleem M. Alam A. Arifin S. Shah MS. Ahmed B. Sultana S. Lupeol, a triterpene, inhibits early responses of tumor promotion induced by benzoyl peroxide in murine skin. Pharmacological Research. 43(2):127-34, 2001
Salvemini D. Manning PT. Zweifel BS. Seibert K. Connor J. Currie MG. Needleman P. Masferrer JL. Dual inhibition of nitric oxide and prostaglandin production contributes to the antiinflammatory properties of nitric oxide synthase inhibitors. Journal of Clinical Investigation. 96(1):301-8, 1995
Salveoni D. Seibert K. Marino MH. New concepts in inflammation and therapy. Drug News Perspect. 9:204–19, 1996
Sawaoka H. Tsuji S. Tsujii M. Gunawan ES. Sasaki Y. Kawano S. Hori M. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Laboratory Investigation. 79(12):1469-77, 1999
Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochemical Pharmacology. 55(11):1747-58, 1998
Sies H. Role of reactive oxygen species in biological processes. Klinische Wochenschrift. 69(21-23):965-8, 1991
Suh JH. Shigeno ET. Morrow JD. Cox B. Rocha AE. Frei B. Hagen TM. Oxidative stress in the aging rat heart is reversed by dietary supplementation with (R)-(alpha)-lipoic acid. FASEB Journal. 15(3):700-6, 2001
Surh YJ. Chun KS. Cha HH. Han SS. Keum YS. Park KK. Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutation Research. 480-481:243-68, 2001
Suzuki YJ. Tsuchiya M. Packer L. Lipoate prevents glucose-induced protein modifications. Free Radical Research Communications. 17(3):211-7, 1992
Swierkosz TA. Mitchell JA. Warner TD. Botting RM. Vane JR. Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. British Journal of Pharmacology. 114(7):1335-42, 1995
Szabo C. Ohshima H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide. 1(5):373-85, 1997
Takahashi M. Fukuda K. Ohata T. Sugimura T. Wakabayashi K. Increased expression of inducible and endothelial constitutive nitric oxide synthases in rat colon tumors induced by azoxymethane. Cancer Research. 57(7):1233-7, 1997
Teichert, J. and Preiss, R. HPLC-methods for determination of lipoic acid and its reduced form in human plasma, International Journal of Clinical Pharmacology, Therapy, & Toxicology. 30: 511-2, 1992
Tsujii M. DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 83(3):493-501, 1995
Tsujii M. Kawano S. Tsuji S. Sawaoka H. Hori M. DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 93(5):705-16, 1998
Vanderveen EE. Grekin RC. Swanson NA. Kragballe K. Arachidonic acid metabolites in cutaneous carcinomas. Archives of Dermatology. 122(4):407-12, 1986
Vane JR. Mitchell JA. Appleton I. Tomlinson A. Bishop-Bailey D. Croxtall J. Willoughby DA. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proceedings of the National Academy of Sciences of the United States of America. 91(6):2046-50, 1994
Wickramasinghe SN. Hasan R. In vitro effects of vitamin C, thioctic acid and dihydrolipoic acid on the cytotoxicity of post-ethanol serum. Biochemical Pharmacology. 43(3):407-11, 1992
Wilson KT. Fu S. Ramanujam KS. Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's esophagus and associated adenocarcinomas. Cancer Research. 58(14):2929-34, 1998
Wink DA. Vodovotz Y. Laval J. Laval F. Dewhirst MW. Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis. 19(5):711-21, 1998
Yermilov V. Rubio J. Becchi M. Friesen MD. Pignatelli B. Ohshima H. Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. 16(9):2045-50, 1995
Ziegler D. Hanefeld M. Ruhnau KJ. Meissner HP. Lobisch M. Schutte K. Gries FA. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. Diabetologia. 38(12):1425-33, 1995